
Time Series Analysis: Finding 
Planets in your RV Data 



1. Is there a periodic 
signal in my data? 

2. Is it due to Noise? 

3. What is its Nature? 

yes 
Stop 

no 

4. Is this interesting? 

no 
Stop yes 

yes 
Find another star no 

5. Publish results 

A Flow Diagram 
for making exciting 
discoveries 

Often the hardest part 



A real signal that is 
statistically signficant, but 
due to systematic errors 

P = 1989 d 
K = 41 m/s (2.5 MJup) 
FAP = 10−7 



The tools we will use 

1.  Discrete Fourier Transform 
2.  Lomb-Scargle Periodogram 



The Discrete Fourier 

  Discrete Fourier Transform: Any function can be fit as 
a sum of sine and cosines (basis or orthogonal 
functions) 

FT(ω) = ∑ Xj (t) e–iωt 
N0 

j=1 

A DFT gives you  as a function of frequency the amplitude 
(power = amplitude2) of each sine function that is in the data 

Power: Px(ω) =        | FTX(ω)|2  

1
N0 

Px(ω) = 

1
N0 

N0 = number of points 

[( Σ
Xj cos ωtj      + Σ
Xj sin ωtj  ) ( ) ] 
2 2 

Recall eiωt = cos ωt + i sinωt 

X(t) is the time series  



A pure sine wave is a delta function in Fourier 
space 

FT 
P = 3.25 d 

ν = 0.307 d−1 



Understanding the DFT 

Two important features of Fourier transforms: 

1) The “spatial or time coordinate” x maps into a 
“frequency” coordinate 1/x (= s or ν) 

Thus small changes in  x map into large changes in s.  
A function that is narrow in x is wide in s 



A Pictoral Catalog of Fourier Transforms 

Time/Space Domain Fourier/Frequency Domain 

Comb of Shah function 
(sampling function) 

t 1/t 

Time Frequency (1/time) 

Period = 1/frequency 

0



Time/Space Domain Fourier/Frequency Domain 

Cosine is an even function: 
cos(–x) = cos(x) 

Positive 
frequencies 

Negative 
frequencies 



Time/Space Domain Fourier/Frequency Domain 

Sine is an odd function: sin(–x) 
= –sin(x) 



Time/Space Domain Fourier/Frequency Domain 

The Fourier Transform of a Gausssian is another Gaussian. If the 
Gaussian is wide (narrow) in the temporal/spatial domain, it is 
narrow(wide) in the Fourier/frequency domain. In the limit of an infinitely 
narrow Gaussian (δ-function) the Fourier transform is infinitely wide 
(constant) 

w 1/w 

e–πx2 e–πs2 



Time/Space Domain Fourier/Frequency Domain 

Note: these are the diffraction 
patterns of a slit, triangular and 
circular apertures 

All functions are interchangeable. If 
it is a sinc function in time, it is a slit 
function in frequency space 



Convolution 

Understanding the DFT: Convolution 

∫ f(u)φ(x–u)du = f * φ


f(x): 

φ(x): 



Fourier Transforms: Convolution 

φ(x-u) 

a1 

a2 

g(x) 
a3 

a2 

a3 

a1 

Convolution is a smoothing function 



2) In Fourier space the convolution  is just the product of 
the two transforms: 

 Normal Space                         Fourier Space 
                      f*g                                         F  ⋅ G 

Understanding the DFT 

The second  important features of Fourier transforms: 

            f  ⋅ g                                       F * G 

sinc sinc2 



Note: The convolution of a function with a delta function 
is just the function located at the frequency of the delta 
function and with the same amplitude of the delta 
function. 

Fourier Transforms 



Understanding the DFT: Alias periods: 

Undersampled periods appearing as another period 



Nyquist Frequency:  

The shortest detectable frequency in your 
data. If you sample your data at a rate of 
Δt, the shortest frequency you can detect 
with no aliases is 1/(2Δt)  

Example: if you collect RV data at the rate 
of once per night (sampling rate 1 day) 
you will only be able to detect frequencies 
up to 0.5 c/d (i.e. only periods longer than 
P = 2 d) 

In ground based data from one site one 
always sees alias frequencies at ν + 1 



0.74 days 

2.8 days 

νa = 1/2.8 + 1 = 1.357 c/d 
Pa  = 1/1.357 = 0.74 d 



Mass = 14 MEarth Mass = 8.6 MEarth 

Alias period of 2.8 d True period of 0.74 d 

ρ1 CnC = 55 CnC 



The transit of 55 CnC (=ρ1 CnC) with MOST (left) and Spitzer (right) 



A sine wave with P = 17.34 d 





ν


Nyquist 
1-ν


1+ν
 2+ν


-ν
 -ν
 +ν
 -ν
 +ν




A closer look at our frequency: 

Lots of 
frequencies! 

That disappear 
when you remove 
the sine wave 



The signal 

The window 
function = DFT of 
a function with a 
value of 1 at the 
time you have 
taken data and 
zero elsewhere 



infinite sine wave 

Observation 
=

X 

Time Domain Frequency Domain 

* 

=

Window 



The window function will appear at every real 
frequency in the Fourier spectrum 



Noise and the sampling window complicate things as they 
sometimes cause a “sidelobe” or a noise peak to have 
more power than the real peak 



A longer time string of the same sine 

A short time string of a sine 

Wide sinc function 

Narrow sinc 
function 

Sine times step function of length of your 
data window 

δ-fnc * sinc 



Assessing the signficance of 
your detected signal 



A very nice sine fit to data…. 

That was generated with pure random noise and no signal 

P = 3.16 d 

After you have found a periodic signal in your data you must ask 
yourself „What is the probability that noise would also produce this 
signal? This is commonly called the False Alarm Probability (FAP) 



The effects of noise in your data 

Little noise 

More noise 

A lot of 
noise 

Noise level 

Signal level 



Kuschnig et al 1997 

For a DFT, if the peak has an amplitude 4x the surrounding 
noise peaks the false alarm probability is ≈ 1% 





 Period Analysis with Lomb-Scargle Periodograms 

LS Periodograms are useful for assessing the statistical 
signficance of a signal 

In a normal Fourier Transform the Amplitude (or Power) of a 
frequency is just the amplitude of that sine wave that is present 
in the data.  

In a Scargle Periodogram the power is a measure of the 
statistical significance of that frequency (i.e. is the signal real?) 

1
2 

Px(ω) = 
[ Σ
Xj sin ω(tj–τ)
] 

2 

j 

Σ
Xj sin2 ω(tj–τ)


[ Σ
Xj cos ω(tj–τ)
] 
2 

j 

Σ
Xj cos2 ω(tj–τ)

j 

+ 
1
2 

tan(2ωτ) =  (Σsin 2ωtj)/ (Σcos 2ωtj) j j



Fourier Transform Scargle Periodogram 
A

m
pl

itu
de

 (m
/s

)  

Note: Square this for a direct 
comparison to Scargle: power to 
power 

FT and Scargle have different „Power“ units 



Fourier Transform Scargle Periodogram 



 Period Analysis with Lomb-Scargle Periodograms 

False alarm probability ≈ 1 – (1–e–P)N ≈ Ne–P 

N = number of indepedent frequencies ≈ number of data points 

If P is the „Scargle Power“ of a peak in the Scargle periodogram we 
have two cases to consider: 

1. You are looking for an unknown period. In this case you must 
ask „What is the probability that random noise will produce a 
peak higher than the peak in your data periodogram over a 
certain frequency interval ν1 < ν < ν2. This is given by: 

Horne & Baliunas (1986), Astrophysical Journal, 302, 757 found an 
empirical relationship between the number of independent frequencies, 
Ni, and the number of data points, N0 :  

Ni = –6.362 + 1.193 N0 + 0.00098 N0
2 



Example: Suppose you have 40 measurements 
of a star that has periodic variations and you find 
a peak in the periodogram. The Scargle power, 
P, would have to have a value of ≈ 8.3 for the 
FAP to be 0.01 ( a 1% chance that it is noise). 



2. There is a known period (frequency) in your data. This is 
often the case in transit work where you have a known 
photometric period, but you are looking for the same period 
in your radial velocity data. You are now asking „What is the 
probability that noise will produce a peak exactly at this 
frequency that has more power than the peak found in the 
data?“ In this case the number of independent frequencies is 
just one: N = 1. The FAP now becomes: 

False alarm probability = e–P 

Example: Regardless of how many measurements you have 
the Scargle power should be greater than about 4.6 to have a 
FAP of 0.01 for a known period (frequency) 



Assessing the False Alarm Probability: Random Data 

The best way to assess the FAP is through Monte Carlo 
simulations: 

Method 1: Create random noise with the same standard 
deviation, σ, as your data. Sample it in the same way as the 
data. Calculate the periodogram and see if there is a peak 
with power higher than in your data over a specified 
frequency range.  



Assessing the False Alarm Probability: Bootstrap Method 

Method 2: Method 1 assumes that your noise distribution is 
Gaussian. What if it is not? Then randomly shuffle your actual 
data values keeping the times fixed. Calculate the 
periodogram and see if there is a peak with power higher than 
in your data over a specified frequency range. Shuffle your 
data  a large number of times (1000-100000). The number of 
periodograms in your shuffled data  with power larger than in 
your data, or χ2 for sine fitting that are lower gives you the 
FAP. 

This is my preferred method as it preserves the noise 
characteristics in your data. It is also a conservative 
estimate because if you have a true signal your shuffling 
is also including signal rather than noise (i.e. your noise is 
lower) 



In a normal Fourier 
transform the Amplitude 
of a peak stays the 
same, but the noise level 
drops 

Noisy data 

Less Noisy 
data 

Fourier Amplitude 



In a Scargle periodogram the noise level drops, but the power in the 
peak increases to reflect the higher significance of the detection. 

Two ways to increase the significance: 1) Take better data (less noise) 
or 2) Take more observations (more data). In this figure the red curve is 
the Scargle periodogram of transit data with the same noise level as 
the blue curve, but with more data measurements.  

versus Lomb-Scargle Amplitude 



Given enough measurements you can find a signal in your data that has 
an amplitude much less than your measurement error. 



Scargle Periodogram: The larger the Scargle 
power, the more significant the signal is: 



Rule of thumb: If a peak has an amplitude 3.6 times the surrounding 
frequencies it has a false alarm probabilty of approximately 1% 

DFT: The amplitude remains more or less constant, but the 
surrounding noise level drops when adding more data 



Generalized Lomb-Scargle Periodogram 

Zechmeister & Kürster 2009, A&A, 496, 577 

L-S uses the mean value in fitting the period and 
normalizing the power spectrum. GLS lets this float. It 
also can use Keplerian orbits. Note GLS shows 
normalized power. For lots of data LS and GLS 
produce the same answer. 



As a good „rule of thumb“  for interpreting Lomb-
Scargle Power, P: 

P < 6 : Most likely not real 

6 < P < 10: May be real but probably not 

10 < P < 14: Might be real, worth investigating more 

14 < P < 20: Most likely real, but you can still be fooled 

P > 20-30 : Definitely real 

Caveat: Depends on noise level and the 
sampling. Always best to do simulations 



And filtering out activity 

1.   Compute the discrete Fourier Transform (DFT) 

2.   Find the highest peak 

3.   Fit a sine wave to that frequency 

4.  Subtract from your data 

5.   In the noise? Yes: stop 

6.  Go to 1 

Pre-whitening : Finding Multiperiodic 
Signals in your Data 



Data 

Data−f1 

Data−f1−f2 

Data−f1−f2−f3 

Data−f1−f2−f3−f4 

Data−f1−f2−f3−f4−f5 

Data−f1−f2−f3−f4−f5−f6 

Data−f1−f2−f3−f4−f5−f6−f7 

Data−f1−f2−f3−f4−f5−f6−f7−f8 

Data−f1−f2−f3−f4−f5−f6−f7−f8−f9 

Data−f1−f2−f3−f4−f5−f6−f7−f8−f9−f10 



σ = 3 m/s  (input noise) 



P1 = 6.25 d     K1 = 200 m/s 

P2 = 3.25 d    K2 = 20 m/s 

DFT Scargle 

You can also pre-whiten using Scargle 



P1 = 6.25 d     K1 = 200 m/s 
P2 = 3.25 d    K2 = 20 m/s 

after removing P1 

DFT Scargle 

To find weak signals 
you have to remove 
dominant ones 



Frequency 
(1/d) 

Amplitude 
(m/s) 

0.00733 87.6 
0.01461 65.0 
0.02189 48.9 
0.02914 41.8 
0.03650 32.2 
0.04372 28.2 

Wrong interpretation: A multi-planet system in resonance 

Right Interpretation: A single planet in an eccentric orbit 

Getting it right: 



Eccentric orbits have the primary period (frequency) plus all its 
harmonics 



In practice: Fit a Keplerian 
orbit (finding best e) to the first 
frequency. Subtract the orbit 
and then look for additional 
frequencies. 

Scargle 



Misc: Least Squares Sine Fitting 

     Fit a sine wave of the form: 
y(t) = A·sin(ωt + φ) + Constant 
Where ω = 2π/P, φ = phase shift 
Best fit minimizes the χ2: 
χ2 = Σ (di –gi)2/N 
di = data, gi = fit


Sine fitting is more appropriate if you have 
few data points. Scargle estimates the 
noise from the rms scatter of the data 
regardless if a signal is present in your 
data. The peak in the periodogram will thus 
have a lower significance even if there is 
really a signal in the data. But beware, one 
can find lots of good sine fits to noise! 



Minimizes the rms scatter (defined by θ) about the 
phased data: choose a test period and phase the 
data. The phased data with the lowest scatter is the 
correct period.  



The first Tautenburg Planet: HD 13189 



Least squares sine fitting: The best 
fit period (frequency)  has the 
lowest χ2 

Discrete Fourier Transform: Gives 
the power of each frequency that is 
present in the data. Power is in (m/
s)2 or (m/s) for  amplitude 

Lomb-Scargle Periodogram: Gives 
the power of each frequency that is 
present in the data. Power is a 
measure of statistical signficance 

A
m

pl
itu

de
 (m

/s
)  



Phase Dispersion Minimization Result 

1.  All techniques should find alias periods 
2.  If one technique finds a period and the others do not 

you should be wary of the result 



Most algorithms (fortran and c language) can be found in 
Numerical Recipes 

Period04: multi-sine fitting with Fourier analysis. 
Tutorials available plus versions in Mac OS, Windows, 
and Linux 

http://www.univie.ac.at/tops/Period04/ 

Generalized Lomb-Scargle Periodogram: 

http://www.astro.physik.uni-goettingen.de/~zechmeister/ 



Period04 solutions using only one data set: 

P1 = 7.2  d       K1 = 3.97 m/s 
P2 = 28.09 d    K2 = 1.86 m/s  
P3 = 91.83 d    K3 = 1.74 m/s 
P4 = 53.25 d    K4 = 1.07 m/s 
P5 = 39.06 d    K5 = 1.00 m/s 
P6 = 277.7 d    K6 = 0.79 m/s 

GL 667 


