
Problems Day 2

PhD school: Vietri Sul Mare 2018

Problem 1: Majoranas and quantum spin Hall edges

Let consider a quantum spin Hall edge with helical edge modes in a magnetic �eld (aligned perpendicular

to the spin orbit �eld) and proximity coupled to a superconducor. Its Bogoliubov-deGennes Hamiltonian

takes the form

H = [upσx − µ] τz −Bσz + ∆τx, (1)

where u is the edge mode velocity.

(a) Compute the spectrum for small p. A convenient trick uses the fact that the spectrum is symmetric

about E = 0. Thus, we can square the Hamiltonian and study its eigenvalues. Show that

H2 = (up)2 +B2 + ∆2 + µ2 − 2µ(up)σx − 2B∆σzτx + 2Bµσzτz. (2)

First, consider the case µ = 0 and show that the spectrum is given by

E2
p = (up)2 + (B ±∆)2. (3)

Note that the gap closes for B = ∆, signifying the topological phase transition.

(b) To �nd the spectrum for nonzero µ, evaluate

{H2 − [(up)2 +B2 + ∆2 + µ2]}2 (4)

and �nd

E2
p = (up)2 +B2 + ∆2 + µ2 ±

√
(2µup)2 + (2B∆)2 + (2Bµ)2. (5)

Use this result to show that the gap is given by

gap = |B −
√

∆2 + µ2|, (6)

which shows that the topological phase transition can be induced by variation of the chemical

potential.

(c) Our treatment of small p so far still involves both low energy (of order |B−∆|) and high energy (of

order |B+∆|) excitations. We can also strictly project the Hamiltonian to low energies by expanding

about the critical point B = ∆. To this end, we write the Hamiltonian as

H = H0 + bσz − µτz (7)

with b = B −∆ and the Hamiltonian

H0 = upσxτz −∆σz + ∆τx (8)

exactly at the topological critical point. First show that the eigenspinors of H0, coresponding to two

counterpropagating gapless low-energy modes with energies Ep,± = ±up are given by

|p,+〉 =
1

2
[1, 1, 1,−1]T |p,−〉 =

1

2
[1,−1, 1, 1]T . (9)

This can be seen most easily by inserting these solutions into the eigenvalue equations. Note that

these eigenspinors correspond to Majorana spinors! Thus, the theory reduces to two counterpropa-

gating Majorana modes in the vicinity of the topological phase transition.
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Now consider the matrix elements 〈p,+|H|p,+〉, 〈p,−|H|p,−〉, and 〈p,+|H|p,−〉 to show that in

the low energy subspace, the low energy Hamiltonian takes the form

H '
(
up −b
−b −up

)
. (10)

Note that a nonzero, but small µ does not enter into the low energy Hamiltonian in linear order.

Compare this result to the low energy Hamiltonina in problem 3 of set 1.

Further optional problems: In these problems, you explore the model for semiconductor quantum wires

proximity coupled to an s-wave superconductor in more detail by discussing the corresponding Bogoliubov-

deGennes Hamiltonian

H =

[
p2

2m
+ upσx − µ

]
τz −Bσz + ∆τx (11)

Here, u denotes the strength of the spin-orbit coupling, σi and τi denote Pauli matrices in spin and particle-

hole space, µ is the chemical potential, and ∆ the strength of the proximity-induced superconductivity.

This way of writing the Bogoliubov-deGennes Hamiltonian assumes that the Nambu spinor is taken in the

form Ψ = [ψ↑, ψ↓, ψ
†
↓,−ψ

†
↑]
T .

In principle, it is a trivial matter to diagonalize this 4× 4 Hamiltonian directly and if you are interested,

I would encourage you to do that. However, this should reasonably be done on a computer. Here, I want

to discuss limiting cases which can be analyzed analytically, which are instructive for thinking about the

problem, and which are helpful for solving more advanced problems such as the e�ects of disorder and

interactions.

Problem 2: Normal Hamiltonian of semiconductor wires proximity coupled to s-wave super-
conductors

Consider the system in the absence of the proximity coupling so that the electron Hamiltonian takes the

form

H0 =
p2

2m
+ upσx −Bσz. (12)

(a) Compute and sketch the spectrum for u = B = 0, for B = 0, and for the full Hamiltonian H0. In

the last case, make sure to plot the two regimes B � εSO = mu2 and B � εSO separately. Also

discuss the spin orientation of the electrons at the Fermi energy in these two regimes.

(b) In order to �nd the eigenspinors of the Hamiltonian, consider a rotation in spin space about the

y-axis, implemented by the unitary transformation

U = exp(−iασy/2) = cos
α

2
− iσy sin

α

2
. (13)

Show that this unitary transformation transforms the Hamiltonian into diagonal form,

H0 → UH0U
† =

p2

2m
−
√

(up)2 +B2 σz, (14)

when choosing tanα = up/B (and thus sinα = up/
√

(up)2 +B2 and cosα = B/
√

(up)2 +B2). Use

this result to show that the eigenspinors of H0 are given by

| ↑〉e = U †
(

1

0

)
=

(
cos(α/2)

− sin(α/2)

)
(15)

| ↓〉e = U †
(

0

1

)
=

(
sin(α/2)

cos(α/2)

)
(16)

with eigenenergies p2

2m ∓
√

(up)2 +B2.
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(c) Show that the corresponding hole spinors (i.e., the eigenspinors of the Hamiltonian H0 = − p2

2m −
upσx−Bσz ) follow from the electron eigenspinors by taking p→ −p and thus from α→ −α so that

| ↑〉h =

(
cos(α/2)

sin(α/2)

)
(17)

| ↓〉h =

(
− sin(α/2)

cos(α/2)

)
(18)

with eigenenergies −[ p2

2m ±
√

(up)2 +B2]. We will use these eigenspinors for electrons and holes in

the next problem.

Problem 3: Mapping to spinless p-wave superconductor

First discuss the situation B � ∆ and let's choose µ = 0 for simplicity. In this limit, we can map the

Hamiltonian of the wire to the spinless p-wave superconductor discussed in the �rst problem set. The

basic idea is that the normal Hamiltonian has two bands and we can project the Bogoliubov-deGennes

Hamiltonian onto the lower band since the upper band is far above the Fermi energy for all momenta. The

low-energy spinors are | ↑〉e for electrons and | ↓〉h for holes, which we derived explicitly in the previous

problem and which for brevity we will refer to as |e〉 and |h〉 in the following.

(a) Compute the matrix elements 〈e|H|e〉, 〈e|H|h〉, and 〈h|H|h〉 of the Bogoliubov-deGennes Hamilto-

nian H to show that the projected Hamiltonian takes the form

H '
(
p2

2m
−
√

(up)2 +B2

)
τz −

up√
(up)2 +B2

∆τx. (19)

(b) Show that this reduces to

H '
(
p2

2m
−B

)
τz −

up

B
∆τx. (20)

for B � εSO and to

H '
(
p2

2m
− u|p|

)
τz − sgnp∆τx. (21)

for B � εSO. Explain physically why the magnitude of the gap is di�erent in the two limits. You

should �nd it useful to remember the discussion of the spin orientations in the previous problem.
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