Problems Day 2
PhD school: Vietri Sul Mare 2018

Problem 1: Majoranas and quantum spin Hall edges

Let consider a quantum spin Hall edge with helical edge modes in a magnetic field (aligned perpendicular
to the spin orbit field) and proximity coupled to a superconducor. Its Bogoliubov-deGennes Hamiltonian
takes the form

H= [upam - ,U'] T, — Bo, + ATz7 (1)

where u is the edge mode velocity.

(a)

Compute the spectrum for small p. A convenient trick uses the fact that the spectrum is symmetric
about £ = 0. Thus, we can square the Hamiltonian and study its eigenvalues. Show that

H? = (up)? + B2+ A% + 12 — 2u(up)oy — 2BA0, 7, + 2Buo. .. (2)
First, consider the case p = 0 and show that the spectrum is given by
E? = (up)* + (B+A)% (3)
Note that the gap closes for B = A, signifying the topological phase transition.
To find the spectrum for nonzero u, evaluate
{#H? — [(up)* + B* + A% + 7]} (4)

and find

E} = (up)® + B® + A? + i £ v/(2uup)? + (2BA)? + (2Bp)?2. (5)
Use this result to show that the gap is given by

gap = |B — /A% + 12|, (6)

which shows that the topological phase transition can be induced by variation of the chemical
potential.

Our treatment of small p so far still involves both low energy (of order |B — A|) and high energy (of
order |B+A|) excitations. We can also strictly project the Hamiltonian to low energies by expanding
about the critical point B = A. To this end, we write the Hamiltonian as

H="Ho+bo, — ur, (7)
with b = B — A and the Hamiltonian
Ho = upo,7, — Ao, + A1, (8)

exactly at the topological critical point. First show that the eigenspinors of Hg, coresponding to two
counterpropagating gapless low-energy modes with energies E, + = dup are given by

1 1
2 S 2
This can be seen most easily by inserting these solutions into the eigenvalue equations. Note that

these eigenspinors correspond to Majorana spinors! Thus, the theory reduces to two counterpropa-
gating Majorana modes in the vicinity of the topological phase transition.

|p, +> [171717—1]T |p7 _> [17_17171]T‘ (9)



Now consider the matrix elements (p, +|H|p, +), (p, —|H|p, =), and (p, +|H|p, —) to show that in
the low energy subspace, the low energy Hamiltonian takes the form

H e~ ( “ __ubp > . (10)

Note that a nonzero, but small p does not enter into the low energy Hamiltonian in linear order.
Compare this result to the low energy Hamiltonina in problem 3 of set 1.

Further optional problems: In these problems, you explore the model for semiconductor quantum wires
proximity coupled to an s-wave superconductor in more detail by discussing the corresponding Bogoliubov-

deGennes Hamiltonian )

H= {p—kupax—u] 7, — Bo, + A1, (11)

2m

Here, u denotes the strength of the spin-orbit coupling, o; and 7; denote Pauli matrices in spin and particle-
hole space, p is the chemical potential, and A the strength of the proximity-induced superconductivity.
This way of writing the Bogoliubov-deGennes Hamiltonian assumes that the Nambu spinor is taken in the
form W = [, ¥, ], —f]".

In principle, it is a trivial matter to diagonalize this 4 x 4 Hamiltonian directly and if you are interested,
I would encourage you to do that. However, this should reasonably be done on a computer. Here, [ want
to discuss limiting cases which can be analyzed analytically, which are instructive for thinking about the
problem, and which are helpful for solving more advanced problems such as the effects of disorder and
interactions.

Problem 2: Normal Hamiltonian of semiconductor wires proximity coupled to s-wave super-
conductors

Consider the system in the absence of the proximity coupling so that the electron Hamiltonian takes the

form
2

Hy = 2%1 + upo, — Bo,. (12)

(a) Compute and sketch the spectrum for u = B = 0, for B = 0, and for the full Hamiltonian Hy. In
the last case, make sure to plot the two regimes B < eso = mu? and B >> egp separately. Also
discuss the spin orientation of the electrons at the Fermi energy in these two regimes.

(b) In order to find the eigenspinors of the Hamiltonian, consider a rotation in spin space about the
y-axis, implemented by the unitary transformation

U = exp(—iaoy,/2) = cos % — ioy sin %. (13)

Show that this unitary transformation transforms the Hamiltonian into diagonal form,

2
Hy — UH U = ;’—m — /(up)? + B20., (14)

when choosing tan o = up/B (and thus sin @ = up/+/(up)? + B? and cosa = B/+/(up)? + B?). Use

this result to show that the eigenspinors of Hy are given by

- () ()
= () ()

with eigenenergies % F /(up)? + B2.



(c) Show that the corresponding hole spinors (i.e., the eigenspinors of the Hamiltonian Hy = —% —

upo, — Bo, ) follow from the electron eigenspinors by taking p — —p and thus from o — —a« so that

1 = () (17)

o = () o

with eigenenergies —[% + +/(up)? + B?]. We will use these eigenspinors for electrons and holes in
the next problem.

Problem 3: Mapping to spinless p-wave superconductor

First discuss the situation B > A and let’s choose p = 0 for simplicity. In this limit, we can map the
Hamiltonian of the wire to the spinless p-wave superconductor discussed in the first problem set. The
basic idea is that the normal Hamiltonian has two bands and we can project the Bogoliubov-deGennes
Hamiltonian onto the lower band since the upper band is far above the Fermi energy for all momenta. The
low-energy spinors are | 1), for electrons and | |);, for holes, which we derived explicitly in the previous
problem and which for brevity we will refer to as |e) and |h) in the following.

(a) Compute the matrix elements (e|H|e), (e|H|h), and (h|H|h) of the Bogoliubov-deGennes Hamilto-
nian H to show that the projected Hamiltonian takes the form

2
H ~ (;n — v/ (up)? + B2> T, — LAT‘%. (19)

() + B

(b) Show that this reduces to

2
p up
~|—-—B|1— —=AT,. 2
H <2m )T 5 AT (20)
for B > e€gp and to )
H ~ (;n - u|p\> T, — SENPAT,. (21)

for B < e€gp. Explain physically why the magnitude of the gap is different in the two limits. You
should find it useful to remember the discussion of the spin orientations in the previous problem.



