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Blueberry Muffins 

The blueberries change the taste, but the muffin is still basically a 

muffin. 

 

The taste does not depend much on the distribution of berries. 



The Electron Gas 

bcc Fe:  nav =2.2x1024 e/cm3 (total);  nav= 6.8x1023 e/cm3 (valence) 

 

Nothing Interesting Happens in the Uniform Electron Gas at Densities of Solids 

D. Ceperley, Nature 397, 386 (1999). 



The Electron Gas Now With Nuclei 

He: liquid at 0 K 

W: melts at 3695 K 



First Principles Modeling 

Image courtesy of E. Wimmer 

• Connect properties with atomic 

level structure. 

• Sort out physical models. 

• Ask “what if” questions. 

• Microscopic mechanisms and 

understanding. 

• Screen ideas for new/modified 

materials. 

• Analyze failures. 



Rough Plan 

Mornings: 

• Monday: “First Principles Calculations: The Glue that Binds 

Materials and Models” 

• Tuesday: “The Wacky World of Perovskites” 

• Wednesday: “Magnetism and Superconductivity” 

• Thursday: “Thermoelectrics: Getting a Grip on Heat” 

• Friday: “Electronic Structure and Chemical Bonding” 

Afternoons: 

• Hands on with the DFT calculations and discussions. 



Thomas Edison 

“Hell, there are no 

rules here - we’re 

trying to accomplish 

something.” 



WARNING 

If you do not ask questions, I will. 

(corollary) If you do not contradict me, I 

will.  

http://upload.wikimedia.org/wikipedia/commons/9/92/Caution_sign_used_on_roads_pn.svg


Property Prediction and Surprises 



M. Opel 

High-Tc Electronic Structures are 2D 

Pickett, Cohen, Krakauer, Singh 



ANSWER: 1994   (Pickett and Singh, PRL)   NO! 

Fermi Surface of YNi2B2C (Tc=16K) 

• Electronic structures are 

very three dimensional 

• Due to strong B-C bonds 

• Large electron phonon 

coupling is responsible for 

superconductivity 

(conventional mechanism). 

• NOT THE BASIS OF A 

NEW FAMILY OF HIGH 

TEMPERATURE 

SUPERCONDUCTORS 



M. Opel 

La3Ni2B2N3 (12K SC) 

(Fig. by Huang et al.) 

Ni2B2 

LaN 

NEWS: 1994 

(Nagarajan, PRL; 

  Cava, Nature) 

 

A new family of 

superconductors 

with Tc up to 23K 

 

Is 23K the tip of 

the iceberg? 



Westminster Abbey, London 

“The underlying physical laws necessary for the 

mathematical theory of a large part of physics 

and the whole of chemistry are thus completely 

known, and the difficulty is only that the exact 

application of these laws leads to equations that 

are much too complicated to be soluble. It 

therefore becomes desirable that approximate 

practical methods of applying quantum 

mechanics should be developed, which can lead 

to an explanation of the main features of complex 

atomic systems without too much computation.” 

P.A.M. Dirac, Proc. Roy. Soc. (Lond) 

123, 714 (1929). 

H = E :  Many Body Problem, with correlated many-

body wavefunctions Too hard. 



Density Functional Theory 

Standard approach: properties are governed by a wavefunction: 

Given the Hamiltonian, we focus on solving for the wavefunction and 

extract observables as expectation values of operators with this 

wavefunction – for N electrons this is a 3N dimensional problem. 

Density Functional Theory: Hohenberg-Kohn theorem tells us 

• Energy and other observables of the ground state are given as 

functionals of the density (r) which exists in 3 dimensions only. 

• The ground state density is unique and is the density that minimizes 

this functional. 

(r1,r2, ….,rN) ; H=E  

E = E[] ; =minE[]{} 

The functional E is proven to exist, but is not given by the theorem. 



Kohn-Sham Approach 
Any density N electron density can be written as the density 

corresponding to an N electron Slater determinant (never mind that the 

true wavefunction cannot). 

(r) =  i(r)*i(r)  ; i=1,2, … , N 

Where the i(r) are the Kohn-Sham orbitals 

 variational principle for  yields a variational principle for the i(r).  

Kohn and Sham then separated terms that should be large in the 

functional leaving a (hopefully) small remainder as the unknown 

functional.  

E[] = Ts[] + Eext[] + UHartree[] + Exc[] 

where, like E, Exc is unknown. Exc is defined by this equation. 



Kohn-Sham Equations 
Use the variational principle to write single particle equations for the 

Kohn-Sham orbitals. 

{Ts + Vext + VHartree + Vxc}i = i i 

Here, Vhartree and Vxc are functionals of the density (functional derivatives 

of the energy terms with respect to density), so generally these equations 

must be solved self-consistently. 

 

This is straightforwardly generalizable to magnetic systems via spin-

density functional theory where instead of a single function one has spin-

densities, (r) and (r) for the collinear case and a four component 

spinor for non-collinear. 

(r) =  i(r)*i(r)  ; i=1,2, … , N 



The Local Density Approximation 
Generally one may write 

E[] = ∫ (r) xc[](r) d3r 

The local (spin) density approximation consists of taking xc[] at each 

point r as the value for the uniform electron gas at the density for this r.  

This exceedingly simple approximation works remarkably well, 

especially considering that the electron gasses of solids are nothing close 

to the uniform electron gas.  



One of many early works of this type. 



NaCl: 

Salt 



• Structures generally show cations in locally symmetric anion cages, 

but the overall lattice structures of halides are often very non-isotropic 

(Pauling Rules). 

CaI2 – light yield is >100,000 ph/MeV 

with Eu2+ activators (Hofstadter, 1964, 

Cherepy, 2008), but this has not proven 

useful because of difficulties with 

crystal growth – very anisotropic , 

micaceous, rhombohedral material that 

invariably cracks. 

Halides (Cl, Br, I) 



Optical Properties of CaI2 

Low energy 

limit: 

nzz/nxx=0.991 

Not the expected result 



Not All Halides Are Near Isotropic 

1.6 eV: 

nzz/nxx=0.956 

Measurements (G.E. Jellison, Jr., et al.):  nAV(1.6 eV)=3.1  

First principles: nAV(1.6 eV)=3.11    in excellent agreement 



But we found that many are: BaIBr 

Orthorhombic: 

L.Y. > 80,000 ph/MeV with Eu2+ 

Energy resolution better than 5% 

(Bourret-Courchesne, et al., 2010).  



Casio transparent ceramic camera lens (2004). 

Key: 

High density ceramic. 

Low light scattering due 

to use of cubic 

(isotropic) materials. 

Crystal growth is not 

part of the process. 

Opportunity for lower-cost manufactured 

scintillators with uniform characteristics. 

Transparent Ceramics 



First principles theory, not fit to experiment        

results that can point in unanticipated directions. 

Predictive Theory 



Modern Density Functionals 

E[] = ∫ (r) xc[](r) d3r 

(1) Local (spin) density approximation: xc[](r) = local((r))  

• Widely used, especially for metals. 

(2) Generalized gradient approximations (GGA, Langreth, Perdew): 

  xc[](r) = gga((r),|(r)|)  

• Much improved binding energies compared to LDA (chemical 

accuracy). 

• Not gradient expansions, but sophisticated functionals based on 

exact scaling relations for the inhomogeneous electron gas 

(electron gas in solids is very non-uniform – can’t use gradient 

expansions). 

• New versions, e.g. PBE-SOL, Wu-Cohen, give almost uniform 

improvement over LDA in structural properties. 



Modern Density Functionals 

(3) Hybrid functionals (Becke and others): 

• Mixture of GGA and Hartree-Fock exchange on the Kohn-Sham 

orbitals. 

• Common in chemistry and semiconductor physics (band gaps are 

better than standard LDA or GGA’s). 

(4) Van der Waal’s Functionals (Langreth, Lundqvist): 

• Non-local functionals that incorporate dispersion interactions. 

• Surface science, molecular systems, water, DNA, carbon 

materials, etc. 



Applications of DFT Calculations 



Energies 

Energies and densities are the fundamental quantities in DFT. 



Structures 
Predicted high pressure phases of Li (Yanming Ma) 



Dynamics 



Magnetism 

S. Blugel, Julich, Germany: Non-collinear magnetism on a thin film. 



Fermi Surfaces 

Based on Kohn-Sham 

eigenvalues, which are not 

fundamentally related to 

excitation energies in exact 

DFT – but this is known to be 

predictive and useful based on 

experience. 



Band Structures 

D.H Lu (2009) 



Band Structure Related Quantities 

• Optical properties. 

• Excitation energies. 

• Electronic transport. 

• Electron-Phonon interactions. 

• etc. 

 

None of these are fundamental in DFT, but they are often quite 

accurate, and the inaccuracies are well established from much 

experience. 

This is very useful because DFT is tractable, microscopic and 

predictive. 



SOME NUMBERS 

Binding energy of Fe:    2541.025 Ry 

bcc-fcc energy difference in Fe:         0.013 Ry   (austenite-ferrite in steels) 

 

Binding of PZT (Piezoelectrics):  46730.476 Ry 

Ferroelectric instability in PZT:          0.006 Ry 

 

Binding of Mn-ferrite (oxide mag.): 15987.192 Ry 

Magnetic coupling of Mn-ferrite:            0.070 Ry 

Small differences between very large energies are the keys to 

materials properties 

  We rely on careful choice of numerical methods and 

error cancellation in the differences. 
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The Linearized Augmented Planewave 

(LAPW) Method 

ET[]=Ts[]+Eei[]+EH[]+Exc[]+Eii 

{Ts+Vks[,r]}I(r)=ii(r) 

Need tools that are reliable and 

predictive. 



DFT ALGORITHMS 

{ Ts + Vks[,r] } I(r) = ii(r) 

•Find I and  to solve: Standard Solution: 

• Expand I in a basis {j}. 

• Many methods, PW, FE, 

LAPW, LMTO, LCAO ... 

• For fixed VKS get a linear 

algebra problem. 

(eigenvalue). 

     <|H|>xi = i<|>xi 

• Iterate to find self-

consistent . 

Some Numbers: 

• # I ~ 10 / atom. 

• # j ~ 10’s - 1000’s / atom. 

• # atoms (State of the Art): 

100 – 1000’s. 

Compute V 

Find Eigenvectors 

Determine EF 

Calculate out 

Converged? 
Yes 

Done 

No 
Mix out in 

in 



Motivation for Augmentation 

Schrödinger Equation: 

(T+V-) = 0 

For valence states:  is 

small  

T is also small except 

where V is strong, i.e. 

near the nucleus. 



Augmented Planewave (APW) Method 
•J.C. Slater, Phys. Rev. 51, 846 (1937); Phys. Rev. 81, 385 (1951). 

ul(r)Ylm(r) 

ei(G+k)r Divide Space Into 2 Regions: 

•Atom Centered Spheres 

•Interstitial 

“Basis” Consists of Planewaves in 

the Interstitial and Radial Functions 

in the Spheres. 

(r) = { 
-1/2  cG ei(G+k)r  rInterstitial (I) 

G 

 Alm ul(r) Ylm(r)  rSphere (S) 
lm 

•  ul(r) are the radial solutions of Schrodinger’s equation at the energy of 

interest (i.e. the band energy). 



Efficiency & Accuracy 

S 

I 
(1) Very efficient basis set. 

 

(2) Represent all quantities as generally as 

possible in all regions of space and make 

only controlled approximations. 

Spheres: Atomic-like treatment 

• Numerical radial functions times Ylm: can increase lmax 

• Angular integrals are fast due to orthogonality of the Ylm 

 

Interstitial: Free space like treatment 

• Planewave expansions. 

• Integrals are fast due to FFT properties 

• Step function (cut out spheres) can be done exactly up to finite 

Gmax by convolution with pre-computed U(G) 



(r) = { 
-1/2  cG ei(G+k)r  rInterstitial (I) 

G 

 Alm ul(r) Ylm(r)  rSphere (S) 
lm 

Key points: 

1.The Alm are not variational parameters. They are determined by a 

matching condition. That is the value of the basis functions, k+G is 

fixed to be continuous at the sphere boundary. 

2.The full crystal potential can be used because one may show that the 

ul are orthogonal to “core” states. 

(E2 – E1) r u1 u2  =  u2 (d
2ru1/dr2) – u1 (d

2ru2/dr2)  

[ -d2 /dr2  + l(l+1)/r2 + V(r) – El ] rul(r) = 0  

So: 

Integrate by parts to get overlap of u1 and u2. They are orthogonal if one 

of them is 0 on the sphere boundary. 

Augmented Planewave (APW) Method 



The ul(r) Ylm(r) are orthogonal 

core states. 

 Can use this basis to obtain 

true valence states in the real 

potential. 

(1) Calculate core states 

separately in each SCF 

cycle. 

(2) Use the same potential for 

core and valence and 

calculate the charge density 

from the sum of these. 

APW: An All-Electron Method 
E 

1s 

2s 
2p1/2 

2p3/2 

. 

. 

. 

valence APW 

Atomic-

like 

core 

package 



Another Interesting Point: 

• Since the basis functions are indexed by k+G one imagines a 

connection with planewave pseudopotential formalisms. 

<A|H|A>x = < A|A>x      <|A†HA|>x = <|A†A>x  

HPS SPS 

• So this is like non-norm-conserving pseudopotential. 

• However, it is highly non-transferable: 

• Cannot be used at another energy (because u is very energy dependent - u/E is 

usually large). 

• Cannot be used for a different potential. 

• Result: The APW method as written requires use of an energy 

dependent secular equation and is not practical for more than simple 

solids. 

Augmented Planewave (APW) Method 



•It’s highly non-transferable, but it is soft! 

D.A. Papaconstantopoulos, 1986 

 APW Band Structure of Cu using a 

planewave cutoff of 8.4 Ry. 

There is a trade-off between 

transferability and softness (nothing is 

free). The story of linearization and 

local orbitals is related to this. 

The APW Method as a Pseudopotential 



Problems with the APW Method 

1) Must solve secular equation for each energy band: 

prohibitive for many bands. No clear way to make 

full-potential. 

2) Asymptote problem: cannot match at energies 

where u(r) is zero on the sphere boundary. This will 

in general happen at some energy – particular 

problem for d and f band materials. 



The Linearized Augmented Planewave 

(LAPW) Method 
O.K. Andersen, Phys. Rev. B 12, 3060 (1975). 

Key Ideas: 

• The problem with the APW method is the energy dependence of the 

secular equation which is a result of the energy dependence of the 

augmenting function. 

• Solution: Add variational freedom: particularly ů(r) = u(r)/E. 

(r) = { 
-1/2  cG ei(G+k)r    rI 

G 

 (Alm ul(r) + Blm ůl(r)) Ylm(r)  rS 
lm 

• Where Alm and Blm are determined by matching the value and 

derivative of the basis functions at the sphere boundary. 



THE LAPW METHOD 

Results of adding ůl to the basis: 

1. Basis is flexible enough to use a single diagonalization (energy 

errors are now O(4)). 

2. Must have additional matching conditions to connect both u and ů 

to the planewaves. This means that for a given level of 

convergence, more planewaves are needed. 

3. The transferability also extends to variations in the potential: this 

enables full-potential methods. 

The full potential, all electron, nature combined with the flexible basis 

(fully flexible in the interstitial) made the (F)LAPW method the state of 

the art for calculating electronic structures, especially for transition 

elements and their compounds – Many groups developed codes 1980 – 

present. 



Early Impact 

YBa2Cu3O7 

Many works starting in 1980’s 

showing predictive calculations for 

complex materials and surfaces 

with d and f elements. 



PROPERTIES OF THE LAPW METHOD 
•All electron method: Core states are included. 

•  is the true wavefunction,  is the true charge density … 

• Can calculate properties that depend on the details of the 

wavefunction near the nucleus: EFG’s etc. 

• Relativity can be included – scalar relativistic, spin-orbit … 

• No special treatment for core-valence interactions is needed. 

•Atom centered representation: 

• LDA+U, interpretation of transition element orbital populations. 

• Matrix elements are complicated. 

• IBS terms in forces, linear response … 

• Basis functions are extended – not very amenable to O(N) … 



CHOICE OF SPHERE RADII 

A 

B 
Size of basis, 

3

maxGnb 

Compute time, 

9

max

3 Gnt b 

For most atoms, with “normal radii”, a given level of convergence is 

reached for a certain, atom dependent value of rGmax. 

Typical rGmax values for good convergence (always check): 

Transition elements:  9 

f-electron materials:   9.5 

Simple elements (B,C,N,O) 7 

Simple metals (Al, Si, …)  6 

Should consider 

in setting radii, which 

are computational 

not physical parameters. 



Example (B2 NiAl) 

Al 

Ni 

Al 

Ni 

 Chemical Sense vs.  Computational Sense 

rAl = 2.8 bohr 

rNi = 1.9 bohr 

rAlGmax= 6  Gmax=2.15 

rNiGmax= 9  Gmax=4.74 

 

rAl = 1.9 bohr 

rNi = 2.8 bohr 

rAlGmax= 6  Gmax=3.15 

rNiGmax= 9  Gmax=3.21 

 
(4.74/3.21)9 = 33 



Complications in the LAPW Method 

EFG Calculation for Rutile TiO2 as a 

function of the Ti p linearization energy 

P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys. 

Rev. B 46, 1321 (1992). 

rTi=2.0 a0 

Electronic Structure 

E 

Ti- 3p 

O 2p 

Hybridized w. 

Ti 4p, Ti 3d 

Ti 3d / O 2p 

EF 



What went wrong? The LAPW method requires 

non-overlapping spheres 

There are serious limits to 

how large RMT can be especially 

in oxides, nitrides, carbides. 

But for many elements there are 

extended core states that are not 

close enough to zero on the 

sphere boundary to have the u 

and ů orthogonal to them. On 

the other hand, the valence 

states may have significant 

contributions from the same l. 

Complications in the LAPW Method 



Rutile Structure 

Solution?: Use large spheres to get orthogonality to core states: 

 Unfortunately, crystal structures don’t generally allow this. 

Perovskite 

Layered Perovskite 

Complications in the LAPW Method 



Problems with semi-core states 

Complications in the LAPW Method 



ONE SOLUTION 

Electronic Structure 

E 

Ti- 3p 

O 2p 

Hybridized w. 

Ti 4p, Ti 3d 

Ti 3d / O 2p 

EF 

Treat all the states in a single energy window: 

• Automatically orthogonal. 

• Need to add variational freedom. 

• Could invent quadratic or cubic APW 

methods. 

(r) = { 
-1/2  cG ei(G+k)r 

G 

 (Almul(r)+Blmůl(r)+Clmül(r)) Ylm(r) 
lm 

Problem: This requires an extra matching 

condition, e.g. second derivatives 

continuous method will be impractical 

due to the high planewave cut-off needed. 



THE LAPW+LO METHOD 

(r) = { 
-1/2  cG ei(G+k)r 

G 

 (Almul(r)+Blmůl(r)) Ylm(r) + 
lm 

 clm(A’lmul(r)+B’lmůl(r)+u(2)
l(r)) Ylm(r) 

lm 

LAPW+LO basis is: 

The variational coefficients are: (1) cG and (2) clm 

Subsidiary (non-variational) coefficients are Alm Blm A’lm & B’lm 

• Alm and Blm are determined by matching the value and derivative on 

the sphere boundary to the planewaves as usual. 

• A’lm and B’lm are determined by matching the value and derivative on 

the sphere boundary to zero. Thus this part 

(A’lmul(r)+B’lmůl(r)+u(2)
l(r)) Ylm(r) is formally a local orbital. 



THE LAPW+LO METHOD 
Key Points: 

1. The local orbitals need (and 

should) only be used for those 

atoms and angular momenta where 

they are needed. 

2. The local orbitals do not serve as 

surrogate atomic wavefunctions in 

the sense that they are in mixed 

basis planewave codes: They are 

just another way to handle the 

augmentation. They look very 

different from atomic functions. 

3. We are trading a large number of 

extra planewave coefficients for 

some clm. 

Shape of H and S 

<G|G> 



THE LAPW+LO METHOD 

RKmax 

La 

RMT = 3.3 a0 

D. Singh, Phys. Rev. B 43, 6388 (1991). 

Cubic APW 

QAPW 

LAPW+LO converges like 

LAPW. The LO adds a few 

basis functions (i.e. 3 per 

atom for p states). Can also 

use LO to relax linearization 

errors, e.g. for a narrow d or f 

band. 

Suggested settings: 

Two “energy” parameters, 

one for u and ů and the other 

for u(2). Choose one at the 

semi-core position and the 

other at the valence. 
 



THE COST OF PLANEWAVES 

Si46 Clathrate 

E. Richter 

Example of a structure with short bonds and large open spaces 



THE APW+LO METHOD 

In certain cases it is highly advantageous to lower RKMAX even at the 

expense of some local orbitals: 

• Structures with short bonds and large empty spaces. 

• Structures with some “hard” atoms embedded in a matrix of “soft” 

atoms: e.g. Mn impurities in Ge. 

Then it is advantageous for selected atoms and l, to use local orbitals to 

go back to the APW method. 

(r) = { 
-1/2  cG ei(G+k)r 

G 

 (Almul(r)) Ylm(r) + 
lm 

 clm(A’lmul(r)+u(2)
l(r)) Ylm(r) 

lm 

n.b. now we only match the 

value on the boundary for 

these l. This means that there 

are extra APW-like kinetic 

energy terms in the 

Hamiltonian and forces. 



Convergence of the APW+LO Method 

Ce 

E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000). 

x100 



REMARKS ON THE APW+LO METHOD 

• APW+LO is equivalent to LAPW not LAPW+LO. It is not suitable 

for handling semicore states. For this LAPW+LO or APW+2LO 

should be used. 

• There is no requirement that all atoms or angular momenta be 

augmented in the same way (see Madsen et al.). This can be exploited 

by using APW+LO only for those atoms and l for which a high Gmax 

would otherwise be needed. For example, with Mn in Ge one might 

use APW+LO only for the Mn 3d channel, and LAPW for all others. 



How to Set Linearization Parameters 



Charge Density, Potential, etc. 

 

• Normally exploit lattice 

symmetry: 

• Stars in interstitial. 

• Lattice harmonics in 

spheres. 

• Only store for 

inequivalent atoms. 

Allows for fast evaluation of Coulomb potential via multipole approach. 



Multipole Method for Coulomb Potential 
M. Weinert. 

1. Evaluate multipole moments of  

inside spheres. 

2. Construct a smooth charge density 

(the pseudocharge) that is the same as 

the real charge outside the sphere, and 

has the same multipoles inside 

• n.b. can construct a smooth charge 

with a given multipole that is zero 

outside a sphere 

3. Use Fourier transform method to get V  exact in interstitial, but not 

in spheres. 

4. Integrate Poisson’s equation inward from sphere on radial grids to get 

V inside spheres. 

 

  fast method comparable to planewaves 
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