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Blueberry Muffins

The blueberries change the taste, but the muffin is still basically a
muffin.

The taste does not depend much on the distribution of berries.



The Electron Gas

Electrons in metals (Fermi liguid)
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bce Fe: n,, =2.2x10%* e/cm? (total); n,,= 6.8x10% e/cm3 (valence)

Nothing Interesting Happens in the Uniform Electron Gas at Densities of Solids
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First Principles Modeling

« Connect properties with atomic
level structure.

 Sort out physical models.
« Ask “what if” questions.

« Microscopic mechanisms and
understanding.

 Screen ideas for new/modified
materials.

Image courtesy of E. Wimmer

« Analyze failures.



Rough Plan

Mornings:

Monday: “First Principles Calculations: The Glue that Binds
Materials and Models”

Tuesday: “The Wacky World of Perovskites”
Wednesday: “Magnetism and Superconductivity”
Thursday: “Thermoelectrics: Getting a Grip on Heat”

Friday: “Electronic Structure and Chemical Bonding”

Afternoons:

Hands on with the DFT calculations and discussions.



“Hell, there are no
rules here - we'’re
trying to accomplish
something.”

Thomas Edison



WARNING

If you do not ask questions, | will.

(corollary) If you do not contradict me, |
will.


http://upload.wikimedia.org/wikipedia/commons/9/92/Caution_sign_used_on_roads_pn.svg

Property Prediction and Surprises
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Pickett, Cohen, Krakauer, Singh



ANSWER: 1994 (Pickett and Singh, PRL) NO!

Fermi Surface of YNI,B,C (T,=16K)

Electronic structures are
very three dimensional

Due to strong B-C bonds

Large electron phonon
coupling is responsible for
superconductivity
(conventional mechanism).

NOT THE BASIS OF A
NEW FAMILY OF HIGH
TEMPERATURE

SUPERCONDUCTORS
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“The underlying physical laws necessary for the
mathematical theory of a large part of physics
and the whole of chemistry are thus completely
known, and the difficulty is only that the exact
application of these laws leads to equations that
are much too complicated to be soluble. It
therefore becomes desirable that approximate
practical methods of applying quantum
mechanics should be developed, which can lead
to an explanation of the main features of complex
atomic systems without too much computation.”

P.A.M. Dirac, Proc. Roy. Soc. (Lond)
123, 714 (1929).

Westminster Abbey, London

Hy = Ey : Many Body Problem, with correlated many-
body wavefunctions =»Too hard.



Density Functional Theory

Standard approach: properties are governed by a wavefunction:
Y(r,r,, ....ry) ; HY=EY

Given the Hamiltonian, we focus on solving for the wavefunction and
extract observables as expectation values of operators with this
wavefunction — for N electrons this is a 3N dimensional problem.

Density Functional Theory: Hohenberg-Kohn theorem tells us

« Energy and other observables of the ground state are given as
functionals of the density p(r) which exists in 3 dimensions only.

« The ground state density Is unique and is the density that minimizes
this functional.

E=E[p]; p=ming,; {p}

The functional E is proven to exist, but is not given by the theorem.



Kohn-Sham Approach

Any density N electron density can be written as the density
corresponding to an N electron Slater determinant (never mind that the
true wavefunction cannot).

p(r) =2 @i(r)7g;(r) ;i=1,2, ..., N

Where the ¢,(r) are the Kohn-Sham orbitals
=>» variational principle for p yields a variational principle for the g;(r).

Kohn and Sham then separated terms that should be large in the
functional leaving a (hopefully) small remainder as the unknown
functional.

Elp] = Ti[p] + Eexlp] + UnarreelP] + Exclpl

where, like E, E,. is unknown. E,_ is defined by this equation.



Kohn-Sham Equations

Use the variational principle to write single particle equations for the
Kohn-Sham orbitals.

{Ts + Vext t VHartree + ch}(Pi = & Q;
p(r) =Z @i(r)pi(r) ;i=1,2,...,N

Here, V| . and V,. are functionals of the density (functional derivatives
of the energy terms with respect to density), so generally these equations
must be solved self-consistently.

This is straightforwardly generalizable to magnetic systems via spin-
density functional theory where instead of a single function one has spin-
densities, p4(r) and py(r) for the collinear case and a four component
spinor for non-collinear.



The Local Density Approximation

Generally one may write
E[p] =1 p(r) &,[p](r) dr

The local (spin) density approximation consists of taking ,.[p] at each
point r as the value for the uniform electron gas at the density for this r.

This exceedingly simple approximation works remarkably well,
especially considering that the electron gasses of solids are nothing close
to the uniform electron gas.



PHYSICAL REVIEW B

VOLUME 26, NUMBER 10

15 NOVEMBER 1982

Theory of static structural properties, crystal stability,
and phase transformations: Application to Si and Ge

M. T. Yin* and Marvin L. Cohen

Department of Physics, University of California, Berkeley, California 94720
and Materials and Molecular Research Division, Lawrence Berkeley Laboratory,
Berkeley, California 94720
(Received 29 March 1982)

TABLE II. Comparison of calculated and measured
static properties of Si and Ge.

Lattice Cohesive Bulk
constant energy modulus
(A) (eV/atom) (Mbar)
Si
Calculation 5.451 4.84 0.98
Experiment 5.429° 4.63° 0.99°¢
Ge
Calculation 5.655 4,26 0.73
Experiment 5.652? 3.85b 0.77°

One of many early works of this type.
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Salt

NaCl



Halides (ClI, Br, I)

« Structures generally show cations in locally symmetric anion cages,
but the overall lattice structures of halides are often very non-isotropic

(Pauling Rules).

‘¢¢¢¢

e
dde
dde

SIS,

Cal, — light yield is >100,000 ph/MeV
with Eu?* activators (Hofstadter, 1964,
Cherepy, 2008), but this has not proven
useful because of difficulties with
crystal growth — very anisotropic,
micaceous, rhombohedral material that
Invariably cracks.



n,k

Optical Properties of Cal,

- ] LOW energy

limit:
1n,/n,=0.991

Not the expected result



Not All Halides Are Near Isotropic

4.5

n.k

E (eV)

Measurements (G.E. Jellison, Jr., et al.): n,,(1.6 eV)=3.1
First principles: n,, (1.6 eV)=3.11 In excellent agreement



n.k

But we found that many are: BalBr

Orthorhombic:

L.Y. > 80,000 ph/MeV with Eu?*
Energy resolution better than 5% .
(Bourret-Courchesne, et al., 2010).

BalBr




Transparent Ceramics

Key:
High density ceramic.

Low light scattering due
to use of cubic
(isotropic) materials.

Crystal growth is not
part of the process.

Casio transparent ceramic camera lens (2004).

Opportunity for lower-cost manufactured
scintillators with uniform characteristics.



Predictive Theory

APPLIED PHYSICS LETTERS 92, 201908 (2008) EEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 57, NO. 6, DECEMBER 2010 3827

Near optical isotropy in noncubic Srl,: Density functional calculations Fabrication and Properties of Translucent Srly and
Bsr!‘irmsfl\n.ﬁg(t]:;w and Technology Division and Center for Radiation Detection Materials and Systems, Oak Eu:SrI2 SCintillator Ceramics

Ridge National Laboratory, Oak Ridge, Tennessee 37831-6114, USA

Stephen R. Podowitz, Romain M. Gaumé, Wesley T. Hong, Atlal Laouar, and Robert S. Feigelson
(Received 24 March 2008: accepted 1 May 2008: published online 22 May 2008)
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FIG. 4. (Color online) Wavelength dependent refractive index of Srl, as
obtained with the Engel-Vosko GGA.

First principles theory, not fit to experiment =»
results that can point in unanticipated directions.



Modern Density Functionals

Elp] =1 p(r) g, [p](r) d°r

(1) Local (spin) density approximation: g,.[p](r) = €c(P(F))
* Widely used, especially for metals.

(2) Generalized gradient approximations (GGA, Langreth, Perdew):
£xc[PI(r) = £4ga(p(r),[Vp(r)))

* Much improved binding energies compared to LDA (chemical
accuracy).

* Not gradient expansions, but sophisticated functionals based on
exact scaling relations for the inhomogeneous electron gas
(electron gas in solids is very non-uniform — can’t use gradient

expansions).

* New versions, e.g. PBE-SOL, Wu-Cohen, give almost uniform
Improvement over LDA in structural properties.



Modern Density Functionals

(3) Hybrid functionals (Becke and others):

« Mixture of GGA and Hartree-Fock exchange on the Kohn-Sham
orbitals.

« Common in chemistry and semiconductor physics (band gaps are
better than standard LDA or GGA’s).

(4) Van der Waal’s Functionals (Langreth, Lundqvist):
* Non-local functionals that incorporate dispersion interactions.

 Surface science, molecular systems, water, DNA, carbon
materials, etc.



Applications of DFT Calculations



Energies

WWW.Isc.org/pccp

PAPER

Large-scale screening of metal hydrides for hydrogen storage
from first-principles calculations based on equilibrium reaction

thermodynamics+

Ki Chul Kim.” Anant D. Kulkarni.” J. Karl Johnson® and David S. Sholl*“

Table 2 Promising single-step reactions identified from our screening approach. The reactions are divided into six categories. AL/, is the change of
the reaction enthalpy at 0 K and AS_,,¢ is the configurational entropy. The configurational entropy is only listed for systems having partial
occupancies. The term TAS,,¢is evaluated at the temperature estimated to produce 1 bar of Hy, Ty, from egn (3). The enthalpy changes at 0 K
for reactions involving LiBH,; used the DFT total energy of ortho-LiBH,. The selection criteria for these reactions are =6 wi.% and
15 < AUy < 75 kJ mol ' H,. For systems having TAS..,r # 0 the figure of merit for comparing reactions is AUy—TASeons

Interesting reactions (3 reactions)

MgH, — Mg + H,

LiH + 2LiNH; + KBH4y — Li;BN-> + KH + 4H-

2MgH, + Mg(NH,), — Mg:N, + 4H,

Reactions involving B{sH > species (13 reactions)

LiBH; — (5/6)LiH + (1/12)Li-B;sH;> + (13/12)H>

4LiBH; + 35Si + 10Mg(BHy), — 5Mg,Si + 2Li,B-H, + 36H,
581 + 12Mg(BHy)>, — 5Mg,Si + 2MgB,-H,» + 36H,

58i + 10Mg(BHy), + 2Ca(BHy); — 5Mg.Si + 2CaB,-H,» + 36H,
2LiBH, + 5Mg(BHy), — 5MgH, + Li-BsH;» + 13H,

58i + 10Mg(BH4), + 4KBHy — 5Mg,Si + 2 K5B-H> + 36H,
Mg(BHy)> — (5/6)MgH, + (1/6)MgB;-H» + (13/6)H»
LiSc¢(BHy4)s — (2/5)LiBH, + ScH, + (3/10)Li,B-H,» + (22/5)H,

ERATITT A TTT N . O ERA.TT .y TT 19TT

wt. %
7.66
7.48
7.4
wt. %
10.03
9.46
9.21
8.85
8.36
8.1
8.09
7.97

795

AUy (TAS ons) (kJ mol ™' Ha)
64.7

43.6 (=7.2)

26

AUy (TAS onp) (kJ mol ™' Ha)
62.1

41

43.6

41.2

43.1

37.3 (=2.9)

47.1

24.1

A%

Energies and densities are the fundamental quantities in DFT.



Structures
Predicted high pressure phases of Li (Yanming Ma)




Dynamics

Giant anharmonic phonon scattering in PbTe

0. Delaire’*, J. Ma', K. Marty', A. F. May?, M. A. McGuire?, M-H. Du?, D. J. Singh?, A. Podlesnyak’,
G. Ehlers', M. D. Lumsden' and B. C. Sales?

Avoided crossing
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Magnetism

S. Blugel, Julich, Germany: Non-collinear magnetism on a thin film.



Fermi Surfaces

Based on Kohn-Sham
eigenvalues, which are not
fundamentally related to
excitation energies in exact
DFT — but this i1s known to be
predictive and useful based on
experience.




Band Structures

a LaOFeP

b LaOFeP

E-Ef (eV)

I X r

D.H Lu (2009)




Band Structure Related Quantities

* Optical properties.

e EXcitation energies.
 Electronic transport.

« Electron-Phonon interactions.

* etc.

None of these are fundamental in DFT, but they are often quite
accurate, and the inaccuracies are well established from much
experience.

This is very useful because DFT is tractable, microscopic and
predictive.



SOME NUMBERS

Binding energy of Fe: 2541.025 Ry
bcc-fcc energy difference in Fe: 0.013 Ry (austenite-ferrite in steels)

Binding of PZT (Piezoelectrics): 46730.476 Ry
Ferroelectric instability in PZT: 0.006 Ry

Binding of Mn-ferrite (oxide mag.): 15987.192 Ry
Magnetic coupling of Mn-ferrite: 0.070 Ry

Small differences between very large energies are the keys to
materials properties

=» We rely on careful choice of numerical methods and
error cancellation in the differences.
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The Linearized Augmented Planewave
(LAPW) Method

Erlp]=Tlp]+Eelp]+EnlpI+Ex[P]+E;

{TstVislo. 3o, (r)=g;¢;(r)

Need tools that are reliable and
predictive.




DFT ALGORITHMS

Find ¢, and p to solve:
{ T+ Vislp.r] 3 94(r) = £ii(1)

— pin——>

Compute V

~ind Eigenvectors

Determine E

Calculate poUt

Converged?

Mix pout pin

Done

Standard Solution:

* Expand ¢, in a basis {¢;}.

 Many methods, PW, FE,
LAPW, LMTO, LCAO ...

* For fixed Vg get a linear
algebra problem.
(eigenvalue).

<¢[H|p>X; = &<0[p>X;
* |terate to find self-
consistent p.
Some Numbers:
* # ¢, ~ 10 / atom.
* #¢;~ 10's - 1000’s / atom.

« # atoms (State of the Art):
100 — 1000’s.



Motivation for Augmentation

Schrodinger Equation:

(T+V-g)p =0

For valence states: € IS
small =»

To Is also small except
where V Is strong, I.e.
near the nucleus.




Augmented Planewave (APW) Method

«J.C. Slater, Phys. Rev. 51, 846 (1937); Phys. Rev. 81, 385 (1951).

el Divide Space Into 2 Regions:

«Atom Centered Spheres
eInterstitial

“Basis” Consists of Planewaves 1n
the Interstitial and Radial Functions

In the Spheres.
QY2 ), ¢ elGH)T reInterstitial (1)
G
¢(r) =
IZ A Uy(0) Y (1) reSphere (S)
m

* U,(r) are the radial solutions of Schrodinger’s equation at the energy of
Interest (i.e. the band energy).



Efficiency & Accuracy

(1) Very efficient basis set.

(2) Represent all quantities as generally as
possible in all regions of space and make
only controlled approximations.

Spheres: Atomic-like treatment
» Numerical radial functions times Y,..: can increase I,
« Angular integrals are fast due to orthogonality of the Y/,

Interstitial: Free space like treatment
 Planewave expansions.
 Integrals are fast due to FFT properties
 Step function (cut out spheres) can be done exactly up to finite
G, DY convolution with pre-computed U(G)

maXx



Augmented Planewave (APW) Method

Q12 ZG Cg eiGHT relnterstitial (1)
¢(r) =
IZ A Uy(0) Y (1) reSphere (S)
Key points: "

1.The A, are not variational parameters. They are determined by a
matching condition. That is the value of the basis functions, ¢,.¢ IS
fixed to be continuous at the sphere boundary.

2.The full crystal potential can be used because one may show that the
U, are orthogonal to “core” states.
[ -d? /dr? + I(1+1)/r2 + V(r) - E; ] ru(r) =0
So:
(E,—E;) ru,u, = u, (d?ru,/dr?) —u, (d°ru,/dr?)

Integrate by parts to get overlap of u, and u,. They are orthogonal if one
of them is 0 on the sphere boundary.



APW: An All-Electron Method

>

valence

2P3)

2P 1/

2S

1s

APW

Atomic-
like
core
package

The u(r) Y,,(r) are orthogonal
core states.

=» Can use this basis to obtain
true valence states in the real
potential.

(1) Calculate core states
separately in each SCF
cycle.

(2) Use the same potential for
core and valence and
calculate the charge density
from the sum of these.



Augmented Planewave (APW) Method

Another Interesting Point:

» Since the basis functions are indexed by k+G one imagines a
connection with planewave pseudopotential formalisms.

<AO|H|AP>X = e< AP|AP>X = <P|ATHA|P>X = e<p|ATAP>X
HPS SPS
» So this is like non-norm-conserving pseudopotential.

* However, it is highly non-transferable:

 Cannot be used at another energy (because u is very energy dependent - ou/cE is
usually large).

 Cannot be used for a different potential.

» Result: The APW method as written requires use of an energy
dependent secular equation and is not practical for more than simple
solids.



The APW Method as a Pseudopotential

*It’s highly non-transferable, but it is soft!

COPPER
s , .- € APW Band Structure of Cu using a
sl LN ‘17 planewave cutoff of 8.4 Ry.
/ \ | There is a trade-off between

Pt transferability and softness (nothing is
free). The story of linearization and
local orbitals iIs related to this.
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Problems with the APW Method

1) Must solve secular equation for each energy band:
prohibitive for many bands. No clear way to make
full-potential.

2) Asymptote problem: cannot match at energies
where u(r) iIs zero on the sphere boundary. This will
In general happen at some energy — particular
problem for d and f band materials.



The Linearized Augmented Planewave
(LAPW) Method

O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

Key ldeas:

* The problem with the APW method is the energy dependence of the
secular equation which is a result of the energy dependence of the
augmenting function.

 Solution: Add variational freedom: particularly #(r) = ou(r)/oE.

Q-1/2 2 CG eI(G+k)r rel
G

o(r) =
2 (A, uy(n) + By, () Yi(r)  reS
Im

« Where A, and B,,, are determined by matching the value and
derivative of the basis functions at the sphere boundary.



THE LAPW METHOD

Results of adding #, to the basis:

1. Basis is flexible enough to use a single diagonalization (energy
errors are now O(5%)).

2. Must have additional matching conditions to connect both u and
to the planewaves. This means that for a given level of
convergence, more planewaves are needed.

3. The transferability also extends to variations in the potential: this
enables full-potential methods.

The full potential, all electron, nature combined with the flexible basis
(fully flexible in the interstitial) made the (F)LAPW method the state of
the art for calculating electronic structures, especially for transition
elements and their compounds — Many groups developed codes 1980 —
present.



Early Impact

Many works starting in 1980°s
showing predictive calculations for
complex materials and surfaces
with d and f elements.

VOLUME 57, NUMBER 26 PHYSICAL REVIEW LETTERS 29 DECEMBER 1986

Instability of the Ideal Tungsten (001) Surface

David Singh, Su-Huai Wei,® and Henry Krakauer
Department of Physics, College of William and Mary, Williamsburg, Virginia 23185




PROPERTIES OF THE LAPW METHOD

*All electron method: Core states are included.
* (¢ IS the true wavefunction, p is the true charge density ...

 Can calculate properties that depend on the details of the
wavefunction near the nucleus: EFG’s etc.

* Relativity can be included — scalar relativistic, spin-orbit ...

 No special treatment for core-valence interactions is needed.
«Atom centered representation:

« LDA+U, interpretation of transition element orbital populations.

« Matrix elements are complicated.

 IBS terms 1in forces, linear response ...

« Basis functions are extended — not very amenable to O(N) ...



CHOICE OF SPHERE RADII

Size of basis,

3
n, <G,

Compute time,

tocnSmGr?Hx

For most atoms, with “normal radi1”, a given level of convergence is
reached for a certain, atom dependent value of rG

max*

Typical rG,, ., values for good convergence (always check):

Transition elements: 9 Should consider
f-electron materials: 9.5 in setting radii, which
Simple elements (B,C,N,O0) 7 are computational

Simple metals (Al, Si, ...) 6 not physical parameters.



Example (B2 NiAl)

Chemical Sense VS. Computational Sense

ry = 2.8 bohr ry = 1.9 bohr
ryi = 1.9 bohr ryi = 2.8 bohr
'3Gra= 6 2 G, =2.15 '3Gra—= 6 2 G, =3.15
MNiCmax= 9 =2 G =4.74 MNiGmax= 9 =2 G =321

(4.74/3.21)° = 33



EFG (102 vimd)

Complications in the LAPW Method

EFG Calculation for Rutile TiO, as a
function of the Ti p linearization energy

5 l
[ r;=2.0a
3l T 0 . v“
o Vyy
A——“'ﬂ——--‘___l__‘
1r o—90—0 4
. & v“
-3 F
-5 A i - i i 3 L ;
-3 -2 -1 0 1 2 3
Ep (Ry)

P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys.
Rev. B 46, 1321 (1992).

Electronic Structure

M Ti3d/O2p

O 2p

Hybridized w.
Ti 4p, Ti 3d




Complications in the LAPW Method

What went wrong?

Figure 5.14 Variation of a semi-core and a valence
band with E,. The dotted lines at ¢, and ¢, denote the
true locations afl the bands.

The LAPW method requires
non-overlapping spheres

= There are serious limits to
how large R,,; can be especially
In oxides, nitrides, carbides.

But for many elements there are
extended core states that are not
close enough to zero on the
sphere boundary to have the u
and = orthogonal to them. On
the other hand, the valence
states may have significant
contributions from the same I.



Complications in the LAPW Method

Solution?: Use large spheres to get orthogonality to core states:
Unfortunately, crystal structures don t generally allow this.

Perovskite

Rutile Structure Layered Perovskite



Complications in the LAPW Method

1 . 15
1 ——Alomic number =
H 3 ] Metal He
toos | 2 C [~ Symbol [ Semimetal B 14 15 16 17 |00z
= F 1201 CIN fal 5 3 7 = g | 10
Li | Be L . . onme B|C|N|O|F |Ne
69419012 Atomic weight 10.51 | 12,01 | 1404|1600 [ 1900 [ 2045
11 Iﬁ ,:!.31 14 | 15 | 16 | 17 | 15
Na el Si| P | S5 |Cl|Ar
2a00 | 2437 3 4 5 o 7 3 9 10 1 1 | zeas|sso00 | s007 | soo7 | 5545 s00s
19 | =0 [ 21 [ 2= | 22 [ 2% [ 25 (26 [ 2F [ == [ =22 [ 30 | 31 | 3= | 33 | 34 | 35 | 35
K|Ca|Sc|Ti| V |CrMn|Fe|Co|Ni |Cu|Zn|Ga|Ge|As |Se | Br| Kr
59.10 | 40,05 || 44.96 | 47.85 | 5094 | 5200 | 5494 | 55.85 | 55.95 | 55.69 | 63.55 | 65.59 | 6a.7z | ve61 | va.9z | raos | 7on | sna0
7 | 35 || 39 | 40 | 41 | 4= | 43 | 44 | 45 | 46 | 47 | 45 | 42 [ =0 | 5L | == | == | =
Rb|(Sr| Y | Zr |[Nb|Mo|Tc |Ru/Rh|Pd|Ag|Cd|In (Sn|Sb|Te| I |Xe
55.47 | 57.62 || 5591 | 9122 [ 9201 [ 9504 | 9s91 [ 101 | 1029 | 1064 | 1o7e | 1124 1148 [ 1187 [ 1218 [ 1276 | 126 | 1315
55 | = || 71 | 72 | 7% | 74 | 75 | 76 | 77 | 75 | 72 | @0 | &1 [ &= | 53 | 84 | &5 | ©6
Cs|Ba||Lu|Hf [ Ta|W |Re|Os | Ir | Pt | Au H%‘ Tl | Ph| Bi | Po| At |Rn
1329 | 157.5 | [ 175.0 | 1785 [ 1509 [ 1558 (1562|1902 | 1922 | 1951 | 197.0 | 200% | 204.4 | 207.2 | 209.0 | 2090 | 2100 2220
57 | o5 |[103 | 104 [ 105 [ 106 | 107 | 105 | 109 | 110 | 111 | 112 114 116 115
Fr |Ra||Lr | Rf |Db|Sg|Bh| Hs | Mt ([Uun(Uuu/Uub U Uuh Uuo
2250 | 2260 || 2621 2611 | 262 | 2651 | 264 | 2654 | 265 | 269 | 272 | 277 259 259 293

5 | 58 | 59 [ 60 | 51 | 62 | 63 | 64 [ 65 [ 66 | 67 | 68 | 63 | 7O
g |La|Ce| Pr | Nd|Pm|Sm|Eu|Gd|Th |Dy|Ho| Er |ITm|Yb
1369 | 1401 | 140.9 [ 144.2 [ 146.9 [ 1504 [ 1520 | 1575 | 1569 | 1625 | 164.9 | 1675 | 1669 | 175.0
Z9 | 90 | 91 | 92 | 93 | 94 | 9% | o6 | 97 | @98 | @2 | 10O | 101 | 10z
T Ac|Th|Pa| U |[Np|(PulAm|Cm|Bk|Cf | Es |Fm|Md|No o1t
zev.o | 2520 | 251.0 | 2550 | 2570 | 2aa0 | 2as0 | 2470 2470 2511 220 25w | 2sea | Esea | | e b

Problems with semi-core states



ONE SOLUTION

Treat all the states in a single energy window:

Electronic Structure . Automatically orthogonal.
B T34/ 0 2 * Need to add variational freedom.
» Could invent quadratic or cubic APW
methods.

012y Co pi(G+k)-r

_ G
Ti 4p, Ti 3d olr) { 2 (AU (N +B, 4 (N+Cyly (1) Y (1)
Im

Problem: This requires an extra matching

_ condition, e.g. second derivatives
continuous =»method will be impractical

due to the high planewave cut-off needed.




THE LAPW+LO METHOD

LAPW+LO basis is:
Q-llz Z CG ei(G+k)'r
o= ° o
Iz (Almul(r)'l'Blmul(r)) Ylm(r) +
m

|Z Cimn(A4 imUi(N+B 1ty (N +U@,(1) Y1)

The variational coefficients are: (1) cg and (2) ¢,

Subsidiary (non-variational) coefficients are A, B;, A’y & B’

A, and B,, are determined by matching the value and derivative on
the sphere boundary to the planewaves as usual.

* A’ and B’ are determined by matching the value and derivative on
the sphere boundary to zero. Thus this part
(A’ U (N+B 1, (N+u@ () Y,.(r) is formally a local orbital.



THE LAPW+LO METHOD

Key Points:

1. The local orbitals need (and
should) only be used for those Shape of Hand S
atoms and angular momenta where
they are needed.

2. The local orbitals do not serve as
surrogate atomic wavefunctions in
the sense that they are in mixed
basis planewave codes: They are
just another way to handle the
augmentation. They look very
different from atomic functions.

3. We are trading a large number of
extra planewave coefficients for
some Cp,.




=1.90"

=2.00

E + 16980 (Ry//atom)

THE LAPW+LO METHOD

6 8 10

ST

D. Singh, Phys. Rev. B 43, 6388 (1991).
SLAPW—4
Cubic APW

|
1 Ryr=3.3 q

QAPW |

| SLAPW=3
N

=2.107

LAFW-rﬁ’q::—c-—-

LAPW+LO converges like
LAPW. The LO adds a few
basis functions (i.e. 3 per
atom for p states). Can also
use LO to relax linearization

errors, e.g. for a narrow d or f
band.

Suggested settings:

Two “energy” parameters,
one for u and & and the other
for u®. Choose one at the
semi-core position and the
other at the valence.



THE COST OF PLANEWAVES
Sig Clathrate \ "

E. Ealchter

Example of a structure with short bonds and large open spaces



THE APW+LO METHOD

In certain cases it is highly advantageous to lower RK,,, even at the
expense of some local orbitals:

« Structures with short bonds and large empty spaces.

e Structures with some “hard” atoms embedded in a matrix of “soft”
atoms: e.g. Mn impurities in Ge.

Then it is advantageous for selected atoms and |, to use local orbitals to
go back to the APW method.

n.b. now we only match the

Q12 EGZ Cg €iGHKT value on the boundary for
o(r) = { these |. This means that there

|2 (Anu(n) Yin(r) + are extra APW-like kinetic

m

energy terms in the

, (2)
E CIm(A imti(NFUEY(1)) (1) Hamiltonian and forces.



Convergence of the APW+LO Method

E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000).
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REMARKS ON THE APW+LO METHOD

APW+LO is equivalent to LAPW not LAPW+LO. It is not suitable
for handling semicore states. For this LAPW+LO or APW+2L.O
should be used.

There is no requirement that all atoms or angular momenta be
augmented in the same way (see Madsen et al.). This can be exploited
by using APW+LO only for those atoms and | for which a high G .,
would otherwise be needed. For example, with Mn in Ge one might
use APW+LO only for the Mn 3d channel, and LAPW for all others.



How to Set Linearization Parameters

Extended Core States?

Set E, at the center Local Orbital
of the relevant states. Capability?
As needed, control NNS
linearization errors o
by reducing R, or Maximize R,  Use local orbitals
adding local orbitals. ,l, to treat semi-core
=» Done Ghost Bands?  states. = Done
YLES
NO YES

Lower £, to semi-
Done Raise E, core position. Reduce
R as needed.




Charge Density, Potential, etc.

Interstitial

p(r), V(r): Lattice Harmonics

¢(r): Atomic-like Functions

p(r), V(r): Stars

¢(r): Planewaves

* Normally exploit lattice
symmetry:

Stars In interstitial.
Lattice harmonics in
spheres.

Only store for
Inequivalent atoms.

Allows for fast evaluation of Coulomb potential via multipole approach.



Multipole Method for Coulomb Potential

M. Weinert. 1. Evaluate multipole moments of p

Inside spheres.

2. Construct a smooth charge density
(the pseudocharge) that is the same as
the real charge outside the sphere, and
has the same multipoles inside
* n.b. can construct a smooth charge

with a given multipole that is zero
outside a sphere

3. Use Fourier transform method to get VV =» exact in interstitial, but not

In spheres.
4. Integrate Poisson’s equation inward from sphere on radial grids to get

V inside spheres.

=>» fast method comparable to planewaves V¢ (G) = %
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