Electronic structure of strongly correlated materials Part III

Vladimir I. Anisimov

Institute of Metal Physics Ekaterinburg, Russia

Results of DFT+DMFT calculations:

Strongly correlated metal Sr(Ca)VO₃ Metal-insulator transition in V_2O_3 Heavy fermions in d-system Li₂VO₄ **Charge transfer insulator NiO** Metal-insulator transition with pressure in MnO **Correlated covalent insulators FeSi and FeSb2 Novel superconductor LaOFeAs** Jahn-Teller distortions in KCuF₃ f-electrons localization in Ce

V⁺⁴ (d¹) ion in cubic perovskite crystal structure

One electron in partially filled t_{2q} band

I.Nekrasov et al, Phys. Rev. B 72, 155106 (2005), Phys. Rev. B 73, 155112 (2006)

Effective electron mass

$$\frac{\mathrm{m}^{*}}{\mathrm{m}} = 1 - \frac{\partial \operatorname{Re}\Sigma(\omega)}{\partial\omega} \big|_{\omega=0} \approx 2$$

Bands narrowing

$$\widetilde{\varepsilon}(\mathbf{k}) = \left(\frac{\mathbf{m}^*}{\mathbf{m}}\right)^{-1} \varepsilon_0(k)$$

Mott insulator V_2O_3

Mott insulator V_2O_3

Paramagnetic metal to paramagnetic insulator transition with small change in corundum crystal structure parameters

K.Held et al, Phys. Rev. Lett. 86, 5345 (2001), G.Keller et al, Phys. Rev. B 70, 205116 (2004)

Heavy fermions material LiV_2O_4

Heavy-fermions without f-electrons: linear specific heat coefficient γ =420 mJ/molK², effective electron mass *m**/*m* =25 below T_K ~28 K

Cubic spinel crystal structure with local trigonal symmetry

Heavy fermions material LiV_2O_4

Sharp quasiparticle peak above the Fermi for T=0 limit (PQMC)

R.Arita et al, Phys. Rev. Lett. 98, 166402 (2007)

Heavy fermions material LiV_2O_4

A. Shimoyamada, et al, Phys. Rev. Lett. 96, 026403 (2006)

Charge transfer insulator NiO

Charge transfer insulator in paramagnetic phase. Ni⁺² (d⁸) ion in cubic rock salt crystal structure

J. Kuneš, et al, Phys. Rev. B 75, 165115 (2007)

Charge transfer insulator NiO

Charge transfer insulator NiO

Metal-insulator transition in MnO

Metal-insulator transition (paramagnetic insulator to paramagnetic metal) with pressure in MnO accompanied with high-spin to low-spin state transition.

J. Kunes et al, Nature Materials 7, 198 (2008)

Metal-insulator transition in MnO

Metal-insulator transition in MnO

Decreasing volume with pressure increases crystal field spliting Δ_{cf} competing with exchange energy J that results in HS \rightarrow LS transition with volume collapse.

Metal-insulator transition in Fe_2O_3

Evolution of the paramagnetic state single-particle spectra with pressure (T = 580 K).

J. Kunes et al, PRL 102, 146402 (2009)

Metal-insulator transition in Fe_2O_3

Spin-polarized Fe-d spectra at the ambient pressure for 580, 1160, and 1450 K (top to bottom). Left-hand inset: The same spectra averaged over spin. Right-hand inset: The staggered magnetization versus temperature curves for various volumes.

J. Kunes et al, PRL 102, 146402 (2009)

Metal-insulator transition in Fe_2O_3

Calculated V-T phase diagram of hematite.

J. Kunes et al, PRL 102, 146402 (2009)

Correlated covalent insulators FeSi and FeSb₂

Transition from non-magnetic semiconductor to paramagnetic metal with temperature increase in FeSi and FeSb₂. Electron doping in Fe_{1-x}Co_xSi results in ferromagnetic metallic state.

Correlated covalent insulators FeSi and FeSb₂

J. Kunes et al, Phys.Rev. B 78, 033109 (2008)

Correlated covalent insulators FeSi and FeSb₂

Temperature increase results in transition from nonmagnetic covalent insulator to bad metal with local moments. Electron doping leads to divergence of susceptibility for low T indicating ferromagnetic instability

Tc=26K for F content ~11%

Y. Kanamura et al. J. Am. Chem. Soc. 130, 3296 (2008)

DMFT results for Hamiltonian and Coulomb interaction parameters calculated with Wannier functions for Fe3d bands only U=0.8 eV J=0.5 eV

Weakly correlated regime!

DMFT results for Hamiltonian and Coulomb interaction parameters calculated with Wannier functions for all bands (O2p,As4p,Fe3d) U=3.5 eV J=0.8 eV

Weakly correlated regime!

ARPES for novel superconductor BaFe₂As₂

The k-resolved total spectral function $A(\mathbf{k}, \omega)$ of BaFe₂As₂ near the Γ and X points in the Brillouin zone. Upper panel: LDA+DMFT spectral function including the renormalized band structure circles obtained by plotting the peak positions of the spectral function $A(\mathbf{k}, \omega)$. Lower panel: The corresponding experimental ARPES intensity map.

S. L. Skornyakov et al, Phys. Rev. B 80, 092501 (2009)

Correlations and lattice distortion: KCuF₃

KCuF₃: a prototype e_g (3d⁹) Jahn-Teller system

Crystal structure and Orbital order (OO):

- pseudo cubic perovskite I4/mcm
- cooperative JT distortion below 1000 K
- Neel temperature ~38 K
- $d_{x^2 y^2}$ hole antiferroorbital ordering

GGA (Cu 3d) density of state:

metallic solution -> inconsistent with exp

Correlations and lattice distortion: KCuF₃

KCuF₃: GGA+DMFT results

Total energy:

structural relaxation due to electronic correlations !

Leonov et al., Phys. Rev. Lett. 101, 096405 (2008)

U = 7.0 eV, *J* = 0.9 eV

GGA:

- metallic solution
- total energy almost const for JT distortion < 4 %
- no JT distortion (orbital order) for T > 100 K !
- \rightarrow inconsistent with experiment

GGA+DMFT:

- paramagnetic insulator
- energy gain of ~ 175 meV
- antiferro-orbital order
- optimal JT distortion at 4.2 %
- JT distortion persists up to 1000 K (melting tem-re)
- \rightarrow in good agreement with exp

Correlations and lattice distortion: KCuF₃

KCuF₃: GGA+DMFT results

U = 7.0 eV, *J* = 0.9 eV

e_g spectral density:

- *paramagnetic* insulator
- gap gradually increase with the JT distortion
- but large even at ~0.5 %

• hole orbital polarization on $x^2 - y^2$ (in LCS with *z*-axis along the longest Cu-F bond)

ons localization in Ce

M.B. Zoelfl et al, Phys. Rev. Lett. 87, 276403 (2001)

f-electrons localization in Ce

Hybridization of the site orbitals with the rest of the crystal in effective single impurity model is described by effective hybridization function Δ ($i\omega_n$) or effective non-interacting bath Green function $G_0(i\omega_n)$:

$$\mathcal{G}_0(i\omega_n) = (i\omega_n + \mu - \Delta(i\omega_n))^{-1}$$

$$\mathcal{G}_0^{-1}(i\omega_n) = G^{-1}(i\omega_n) + \Sigma(i\omega_n)$$

M.B. Zoelfl et al, Phys. Rev. Lett. 87, 276403 (2001)

f-electrons localization in Ce

Total energy for Ce calculated in LDA+DMFT(QMC) (solid line) and in polarized Hartree-Fock approximation (dashed line) for three temperature values. Long dashed line corresponds to pressure for $\alpha - \gamma$ - transition: Ε

$$E = -P_{exp}V$$
.

A.K. McMahan, K. Held, R.T. Scalettar, Phys. Rev. B 67, 075108 (2003)

- Ab-initio LDA+correlation Hamiltonian is defined with definition of correlated orbitals and interaction strength (U) between them based on Wannier functions representation.
- Static mean-filed approximation lead to LDA+U method and dynamical mean-filed approximation to LDA+DMFT
- LDA+U method describes all kinds of spin, orbital and charge order effects in Mott insulators
- LDA+DMFT method is adequate for paramagnetic strongly correlated metals