
Tutorial Two Solutions

Exercise 1:

[1] Why are only six values listed? Aren’t there 16 possible separations?
On a 4x4 lattice with periodic boundary conditions, there are only six inequivalent lattice
separations. The separations (0,1) and (1,0) are obviously equal by the x/y symmetry of the
lattice. The separations (0,3) and (0,1) are equivalent through use of the periodic boundary
conditions. We thus have to report correlation functions only for a small “wedge” of possible
separations. The same is true in momentum space. The code automatically averages over
the equivalent separations, just as it averages over the initial point j in any correlation
function 〈A(j + l)A(j)〉.
[2] Is the pattern of signs in your low T data consistent with antiferromagnetism?
You should find the spin correlations are negative for separations (0,1), (2,1) and positive
for separations (0,0), (0,2), (1,1), and (2,2). It is easy to see that in the former case the
spins are on different sublattices, while in the latter case they are on the same sublattice.
Thus the signs are indeed consistent with AF order.
[3] Why is the (0, 0) correlation function enhanced over its T = ∞ value of 0.500 even at
the highest temperatures, T = 2 (β = 0.5) while the other separations only start to build
up at much lower T ?
The (0,0) correlation function is the local moment, the correlation of a spin with itself. The
energy scale of moment formation is the repulsion U , which suppresses double occupancy.
On the other hand, the energy scale for spin order is J = 4t2/U , a factor of four smaller.
[4] It looks like the correlation functions for (0,2) and (1,1) separations are the same to
within error bars. Yet these are not the same separation in space. Or are they?!
This is not a coincidence. If you draw the lattice connections of a 4x4 square lattice with
periodic boundary conditions, and those of a 2x2x2x2 (four dimensional hypercube of linear
dimension 2 sites), you can see that all the lattice connections are equivalent. On the
2x2x2x2 hypercube you can see that the (0,2) and (1,1) separations on the 4x4 lattice are
identical.

Exercise 2:

[1] If you compare spin correlations at the same separation and same temperature for different
lattice sizes, what happens? Why?
The spin correlations on the smaller lattice are larger, when all other parameters are held
fixed. The reason is that on small lattices the periodic boundary conditions provide addi-
tional paths connecting sites, enhancing their correlations. I am not sure of this, but perhaps
in a frustrated system things could be different. For example if you ran the code on a 3x3
lattice with periodic boundary conditions, spin correlations might be reduced over those of
larger lattices.

Exercise 3:

[1] Why don’t you need to get data at µ > 0? Did you really need to run µ = 0?
We know from particle-hole symmetry that 〈n〉(µ) = 2 − 〈n〉(−µ). This immediately also
tells us that 〈n〉(µ = 0) = 1, so it is not necessary to run that value.
[2] Make a plot of density versus µ for each β. Do you see a Mott plateau?
[3] Make a plot of the error bars in the density as a function of the density. Also make a
plot of the average sign versus density. Do these help you understand my claim that β ≈ 6
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FIG. 1: Density ρ vs chemical potential µ. As the temperature is lowered, the curve becomes
increasingly flat near µ = 0, ρ = 1.

is the temperature limit in these simulations?
[4] It looks like some sort of plateau might also be developing around ρ = 0.6. Do you have
any idea where that might come from?
This is a finite size effect. ρ = 0.625 is a special ‘shell’ filling. As the U = 0 Fermi surface
expands from the origin, it encounters four new k points at (±π/2, 0) and (0,±π/2), and
the filling jumps from 2/16 (just the k = (0, 0) point occupied by the two spin species) to
10/16 = 0.625. U = 4 is not sufficiently strong coupling to wipe out this vestige of the
discrete k points. Obviously as the lattice size increases, such effects become less evident.
However, there is an important lesson here: weak couplings are often more subject to finite
size effects that stronger ones.
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FIG. 2: Error bars in the density as a function of the density for different temperatures. For β = 8
the error bar in the density is almost 2 percent of the density. While we can reduce the error bars
by running longer (four times as long for a factor of two reduction in error bars), we also find the
error bars at fixed run length gro exponentially with β. The origin is the sign problem. (See next
plot.)
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FIG. 3:
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