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I. INTRODUCTION

A. Contents of these notes

In these notes we will discuss the physics of electrons which move in a disordered potential
and which also interact with each other. This is an enormous field, one of the most interesting
in condensed matter physics, both for theory and experiment. In order to make it tractable,
we will consider a specific model- the Hubbard Hamiltonian with random bond and site
energies, although we will also take a brief foray into an interesting case when the hopping
is non-Hermitian. We will also focus on a particular computational method, “determinant
Quantum Monte Carlo”1.

We begin, in Section II., by examining the physics of the Hubbard Hamiltonian in the
limit of no disorder, and present its strong, weak, and mean field treatments. Appendix 1
briefly reviews the formalism of second quantization, for those students for whom it is not
so familiar. We will also describe the exact diagonalization method. In Section III., we
will summarize some of the central features of the Anderson localization transition, that is,
the case when we have disorder and no interactions. We will also discuss a generalization,
the Hatano-Nelson model, in which the left and right hopping amplitudes are unequal, and
hence the Hamiltonian is not Hermitian. In doing so, we will discuss a relatively new math-
ematical tool, the ‘pseudospectrum’. Section IV. outlines the determinant Quantum Monte
Carlo (DQMC) method. Our emphasis will be on presenting the ‘pseudocode’ for DQMC,
relegating a more complete derivation to Appendix 3. Quantum Monte Carlo involves an
understanding of classical monte carlo, which is summarized in Appendix 2.

Then, after having considered the effects of randomness and interactions separately, and
introduced DQMC, Section V. puts the phenomena of randomness and interactions together.
We show results of simulations of the “Anderson-Hubbard Hamiltonian”, including evidence
that, in two dimensions, interactions can drive a state that is localized by randomness into a
metallic phase. A Zeeman field, which spin polarizes the electrons and thereby reduces their
effective interaction, can return the system to insulating behavior. We present evidence that
particle-hole symmetry, and whether the disorder directly competes with the formation of
magnetic moments, plays a crucial role in these transitions. Appendix 4 contains a review
of aspects of this particle-hole mapping. We conclude section V. with a discussion of the
band insulator to metal transition. We show that an insulating phase caused by a periodic
potential which doubles the unit cell can, like a disorder-induced Anderson insulator, also
be made metallic by interactions.

I have interspersed these notes with exercises. Some are rather simple- a few lines of
analytic derivation might serve to complete them. Others might go down the road to being
small research topics, and could involve trying to write a nontrivial program. The lecture
notes contain substantially more material than we will be able to cover in a week, especially
when the Exercises are attempted. I hope they will provide additional avenues for exploration
after this summer school is completed, or topics for the more advanced student who wishes
to proceed a bit further or more rapidly.

We close this introduction with a (very!) brief review of the history of some of these
problems. For details concerning the two dimensional MIT and the Anderson-Hubbard
Hamiltonian, the student is encouraged to look at the various reviews of the field2,3. A
nice introduction to the Hubbard model, both its motivation and properties is contained
in4. Further summaries of DQMC may be found in a variety of articles and summer school
notes, including5–8.
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FIG. 1: Left: Resistivity ρ versus temperature T for samples with a varying density of electrons
n. As the density increases, the system undergoes a transition from insulating to metallic. Right:
Similar data for a transition tuned by disorder strength δ. Horizontal axis is an appropriately
scaled form. A large family of curves collapses to two curves, one for metallic disorder strengths,
and one for insulating ones. Plots from: ****

B. Brief Overview of Physics

When electrons are confined to two dimensions in a disordered environment, common un-
derstanding until relatively recently was that the electronic states would always be localized
and the system would therefore be an insulator. This idea is based on the scaling theory
of localization9 for non-interacting electrons and corroborated by subsequent studies using
renormalization group (RG) methods10,11. The scaling theory highlights the importance of
the number of spatial dimensions and demonstrates that while in three dimensions for non-
interacting electrons there exists a transition from a metal to an Anderson insulator upon
increasing the amount of disorder, a similar metal–insulator transition (MIT) is not possible
in two dimensions.

The inclusion of interactions into the theory has been problematic, certainly when both
disorder and interactions are strong and perturbative approaches break down. Following the
scaling theory the effect of weak interactions in the presence of weak disorder was studied
by diagrammatic techniques and found to increase the tendency to localize12. Subsequent
perturbative RG calculations, including both interactions and disorder, found indications of
metallic behavior, but also, for the case without a magnetic field or magnetic impurities,
found runaway flows to strong coupling outside the controlled perturbative regime, and
hence were not conclusive13–15. The results of such approaches therefore did not change the
widely held opinion that, in the absence of a magnetic field coupling to orbital motion, or
magnetic impurities, the MIT does not occur in two dimensions.

The situation changed dramatically with the recent transport experiments on effectively
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FIG. 2: A superconductor to insulator transition is well established in two dimensional thin films.
Here results for the resistance R(T ) of Pb films of varying thickness are shown. The transition can
also be controlled with degree of disorder, and magnetic field. Figure from: *****

2D electron systems in silicon MOSFETs which have provided surprising evidence that a
MIT can occur in 2D16–18. In these experiments the temperature dependence of the resistivity
ρ changes from that typical of an insulator (increase of ρ upon lowering T ) at lower density
to that typical of a conductor (decrease of ρ upon lowering T ) as the density is increased
above a critical value. (See Fig. 1, left panel.) The fact that the data can be scaled onto
two curves (one for the metal, one for the insulator) is seen as evidence for a quantum phase
transition with carrier density n as the tuning parameter. (See Fig. 1, right panel.) The
possibility of such a transition has stimulated a large number of further experimental19–22

and also theoretical investigations23–26, including proposals that a superconducting state is
involved27,28. Explanations in terms of trapping of electrons at impurities, i.e. not requiring
a quantum phase transition have also been put forward29,30. While there is no definitive
explanation of the phenomena yet, it is likely that electron-electron interactions play an
important role.

One central question motivated by the experiments is: Can electron-electron interactions
enhance the conductivity of a 2D disordered electron system, and possibly lead to a con-
ducting phase and a MIT31,32? In order to address this issue theoretically, we of course need
to identify an appropriate model and, then, work out its properties.

As mentioned above, these lectures will begin by providing some background on the
“Anderson-Hubbard” Hamiltonian, which is one of the most simple models that incorporate
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both disorder and interactions. We will discuss several methods to develop an initial insight
into the physics of this Hamiltonian, but our focus will be on Determinant Quantum Monte
Carlo (DQMC). We will conclude with a detailed description of the MIT studied with
this model and method. DQMC has previously been applied extensively to the Hubbard
model without disorder.1,6,33–36 While the strengths of DQMC in addressing this problem
are considerable: disorder and interaction can be varied in a controlled (ie exact) way and
strong interaction is treatable, it is important also to acknowledge its serious limitations:
the size of the lattice is finite (a few hundred sites) and low temperatures are often not
accessible due to the sign problem.

There are many analogies between the MIT and the superconducting-insulator transition
(SIT). As for the MIT, one of the most interesting issues again focuses on the behavior in
two dimensions. A transition from superconductor to insulator is observed as the degree of
disorder or the magnetic field is changed, but the fundamental question is not whether a
superconducting phase can exist (it surely can!), but rather why the value of resistance at
the transition appears to take on a universal value. Interestingly, the connection between
the MIT and SIT can be brought out in the context of the Hubbard Hamiltonian through a
particle-hole transformation which changes the sign of the interaction between the electrons
from repulsive to attractive, since the latter case allows for superconducting phases. We will
not discuss this problem, but the interested reader can begin with reviews such as37–42 or,
for applications of DQMC, to43,44.

C. Guide to Exercises

I hope these notes will provide interesting problems for students of different levels of
familiarity with numerical work and with the Hubbard model. The most advanced/ambitious
students might wish to construct a determinant Quantum Monte Carlo code. Though not
phrased in the form of exercises, Section IV. writes down all the required equations and
shows some simple results. Appendix 3 provides a derivation. It is, however, unlikely
such a task could be fully accomplished in only the several hours a day we have here. A
more realistic objective for a student who wants a ‘research’ code is to try a mean field or
exact diagonalization program. These are discussed in Section II., and also in the material
presented by other lecturers. Perhaps most straightforward, though, would be to attempt
the exercises. Many are, I hope, suitable for time frames such as our evening ‘Training
Sessions.’ Here are some of the options.

Section II: Exercises extending aspects of the weak (U = 0) and strong (t = 0) coupling
limits of the Hubbard Hamiltonian, for example, determining the tight binding dispersion
relations and density of states of the periodic Anderson model, the three band Emery model,
or the Hubbard model on triangular and honeycomb lattices.

Section III: Execrcises involving the Hatano-Nelson model.

Appendix 1: Exercises involving the manipulation of creation and destruction operators and
the Hubbard Hamiltonian.

Appendix 2: Exercises involving the formal foundations of classical monte carlo (detailed
balance, the Metropolis algorithm, the relation of monte carlo to molecular dynamics and
the Langevin equation, etc).

Appendix 4: Exercises involving particle-hole symmetry and the relation between the at-
tractive and repulsive Hubbard Hamiltonians.
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II. THE TRANSLATIONALLY INVARIANT HUBBARD MODEL

The Hubbard Hamiltonian, in the absence of disorder, is,

H = −t
∑

〈j,l〉σ
c†jσclσ + U

∑

j

nj↑nj↓ − µ
∑

j

(nj↑ + nj↓). (1)

Here c†jσ(cjσ) are creation(destruction) operators for electrons on site j with spin σ. (Their
properties are reviewed in Appendix 1.) The first term of H is the kinetic energy since it
describes the destruction of an electron of spin σ on site l and its creation on site j (or vice-
versa). The symbol 〈j, l〉 indicates that hopping is allowed only between specified pairs of
sites (usually the near neighbors). We will mostly consider square lattices in two dimensions.
The second term is the interaction energy: a doubly occupied site (nj↑ = nj↓ = 1) adds an
energy U to the state. The final term is a chemical potential which controls the filling. The
situation where the filling is one electron per site is referred to as as ‘half-filling,’ since the
lattice contains half as many electrons as the maximum number (two per site). The value
µ = U/2 results in half-filling for any choice of hopping t or temperature T , if the lattice is
bipartite and the hopping only connects sites on the two independent sublattices. Studies of
the Hubbard model often focus on the half-filled case because it exhibits a lot of interesting
phenomena (Mott insulating behavior, anti-ferromagnetic order, etc.)

As we shall see, the Hubbard Hamiltonian offers a way to get qualitative insight into
how the interactions between electrons can give rise to insulating, magnetic, and even novel
superconducting effects in a solid. It was written down in the early 1960’s and initially
applied to understanding the behavior of the transition metal monoxides like FeO, NiO,
CoO. These compounds are antiferromagnetic insulators, but are predicted to be metallic
by “electronic structure” methods which treat strong interactions less carefully.

Over the intervening years, the Hubbard model has been applied to the understanding
of many systems, from ‘heavy fermion’ systems in the 1980’s, to high temperature super-
conductors in the 1990’s. In the last several years the ‘boson-Hubbard’ model has been
invoked to study the physics of untra-cold atoms. Indeed, it is an amazing feature of the
Hamiltonian that, despite its simplicity, its exhibits behavior relevant to many of the most
subtle and beautiful properties of solid state (and now atomic) systems.

A. Analytic Treatments

The Hubbard model has been studied by the full range of analytic techniques developed
by condensed matter theorists, from simple mean field approaches to field theoretic methods
employing Feynman diagrams, expansions in the degeneracy of the number of ‘flavors’ (spin,
orbital angular momentum), the Bethe Ansatz, etc. It has also been extensively attacked
with numerical methods like diagonalization and Quantum Monte Carlo (QMC). In these
lectures, our main tool will be QMC, but first we will discuss the non-interacting and zero
hopping limits, and static mean field theory, to develop some simple pictures of the physics.

1. Noninteracting Limit (U = 0):

In Appendix 1, we present two, equivalent, ways to solve the Hubbard Hamiltonian at
U = 0. The first is based on explicitly constructing the matrix for Ĥ in the single particle
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FIG. 3: Left: Surfaces of constant energy E for the square lattice dispersion relation. Note that for
E = 0 the topology is a rotated square and that εk+(π,π) = εk for points k on the surface. Right:
The density of states. Note the divergence (‘van Hove singularity’) at E = 0.

sector. The second considers a change to momentum creation and destruction operators,

c†kσ =
1√
N

∑

l

eik·lc†lσ. (2)

The key result is that the kinetic energy term in the Hamiltonian can be rewritten as

H =
∑

kσ

(εk − µ)c†kσckσ (3)

where εk depends on the specific lattice geometry, as do the discrete allowed values of the
momentum k. For a one dimensional lattice of length N with near neighbor hopping,
εk = −2t cosk and k = kn = 2πn/N with n = 1, 2, 3, ..., N . This is much more simple than
the original expression in terms of spatial creation and destruction operators, because it is
diagonal. That is, the Hamiltonian only counts the number of electrons in each momentum
state without converting electrons from one momentum to another. A useful analogy is of
course with normal modes in classical physics which can be excited without setting other
modes into motion. Just as the normal mode construction in classical physics is possible
only for quadratic potential energies, the diagonalization of a tight binding Hamiltonian can
be done only when it is quadratice in the fermion creation and destruction operators.

Because the case of the two dimensional square lattice is of interest physically for the
cuprate superconductors, and because it forms the bulk of the applications we will discuss in
Section V., we will review a few of its properties. The dispersion relation is εk = −2t (coskx+
cosky). This dispersion relation has a number of interesting and important features. First,
its Fermi surface, ie the contours of constant energy, is ‘nested’ at half-filling. That is, a
particular wave-vector, k = (π, π) connects extended lengths of the Fermi surface.

Second, its density of states,

N(E) =
1

N

∑

k

δ(E − εk). (4)

is singular at half-filling, E = 0. Regarding the former, a number of response functions, for
example the magnetic susceptibility χ(q), involve energy denominators of the form εk+q −
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FIG. 4: Left: Energy 〈E(T )〉 of the square lattice Hubbard Hamiltonian with t = 1, U = 0, and
density ρ = 1 (half-filling). Right: Specific heat C(T ).

εk and hence become large when nesting occurs. Possible implications of both of these
features have been discussed in the context of theories of high temperature superconductivity.
Regarding the latter, there are a number of physical responses of a system which have a
temperature scale T∗ = V1e

−1/(N(EF )V2) where V1 and V2 are some energy scales in the problem
and EF is the Fermi energy. (An example is the form of the energy gap in the BCS theory
of superconductivity.) If N(EF ) diverges, T∗ can be large.

The average energy of the U = 0 Hubbard model it is,

〈E(T )〉 = 1

N

∑

k

εk(1 + e+β(εk−µ))−1. (5)

In Fig. 4 we show the energy and specific heat, E(T ) and C(T ) = dE/dT , as functions of
temperature. As expected, C(T ) has a peak at a temperature T set by the hopping t.

This treatment of the U = 0 Hubbard Hamiltonian is perhaps well known to you all. We
now turn, mainly as exercises, to several refinements which are interesting, and perhaps less
familiar.

Exercise 1: In Section V.D. we will consider the one-dimensional Hubbard Hamiltonian with
a staggered site energy V = A

∑

l(−1)l nl. Solve the U = 0 limit by going to momentum
space. Show that you get two energy bands separated by a gap.

Exercise 2: Compute (numerically) the density of states N(E) of the Hubbard model on a
two dimensional honeycomb lattice. You will need to determine the dispersion relation and
how the periodic boundary conditions restrict the allowed k values. You should find that
N(E) vanishes linearly at E = 0. The system is said to be a semi-metal there.

Exercise 3: Compute (numerically) the density of states N(E) of the Hubbard model on a
two dimensional triangular lattice. Again, you will need to determine the dispersion relation
and how the periodic boundary conditions restrict the allowed k values. Unlike the preceding
cases, you will find that N(E) 6= N(−E). This is a consequence of the fact that the model
is not “particle-hole” symmetric on a triangular lattice. This will be discussed further in
Sections V.C. and Appendix 4 below.
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FIG. 5: Lattice connections of a one-dimensional periodic Anderson model. Sites of the top
(‘conduction’) chain are connected to one another by hopping parameter t. Sites of the lower
(‘localized’) chain are not connected to each other, but hybridize with a hopping parameter V with
the sites in the top chain.

FIG. 6: Lattice connections of a three band Emery model of the CuO2 sheets of the cuprate
superconductors. The Cu atoms lie in a square array with intervening O atoms. Pairs of Cu and
O atoms are connected by hopping t. Sometimes an additional hopping t′ between oxygen atoms
is also included. The O sites are also given a site energy εpd relative to the Cu sites.

These last two exercises pertain to the single band Hubbard model on non-square geome-
tries in two dimensions. Some model Hamiltonians contain more than one orbital and hence
several energy bands. Constructing the non-interacting dispersion relations are a first step
in elucidating their physics.

Exercise 4: Almost as widely studied as the Hubbard Hamiltonian is the ‘Periodic Anderson
Model’ (PAM). It consists first of a set of sites whose near neighbors are connected with
hopping ‘t’. These might be in a one-d chain, or a two-d square lattice arrangement for
example. Then there is a second set of localized sites which are disconnected from each
other. However, they hybridize with their partners in the first set with amplitude ‘V ’, as
illustrated in Fig. 3. Compute E(k) and N(E) for this model, in d = 1. Show there is a
band gap when V 6= 0. If one adds a Hubbard U on the localized orbitals one gets the
Periodic Anderson model.

Exercise 5: A three-band Hubbard model introduced by Emery and widely studied for high
temperature superconductivity has the geometry shown in Fig. 4. Compute E(k) and N(E).
Does one of your bands have a very simple form? This geometry can be viewed as a square
array of sites with additional sites sitting on the links between them. The copper atoms
in high-Tc materials form just such a planar square arrays, whilst the oxygen atoms bridge
them.
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FIG. 7: Density 〈ρ〉 as a function of chemical potential for the single site (t = 0) Hubbard model
at U = 4 for three different temperatures. At low T a ‘Mott plateau’ develops.

2. Extreme Strong Coupling Limit (t=0):

Having looked at some of features of the noninteracting Hubbard Hamiltonian (in various
geometries), we now get a first insight into the role of interactions by considering a single
site. Alternately phrased, we can set t = 0 in the Hamiltonian. In this case we have a
collection of independent sites. The one site model is easily solved. We have four possibilities
corresponding to the site being empty, having a single electron (either spin up or spin down)
or being doubly occupied. Each of the states |0〉, | ↑〉, | ↓〉, | ↑↓〉 is an eigenstate of H with
eigenvalues 0,−µ,−µ, U − 2µ respectively. The partition function is

Z =
∑

α

〈α|e−βH |α〉 = 1 + 2eβµ + e2βµ−βU , (6)

and the energy is,

E = 〈H + µn〉 = Z−1
∑

α

〈α|He−βH |α〉 = (1 + 2eβµ + e2βµ−βU)−1 U e2βµ−βU . (7)

The occupation is given by,

ρ = 〈n〉 = 2(1 + 2eβµ + e2βµ−βU)−1(eβµ + e2βµ−βU) (8)

In Fig. 7 we plot ρ vs. µ for U = 4 and T = 2 and T = 0.5 to exhibit one of the
fundamental features of the Hubbard model, namely the “Mott insulating gap”. At low
temperature (T = 0.5) µ jumps to a higher value when the filling crosses through ρ = 1.
This is the most simple indication of a ‘Mott’ insulating phase in the half-filled Hubbard
model.

We will discuss this phenomenon in much more detail, but it is clear that, since the
chemical potential µ = ∂E/∂ρ it measures how much the energy changes when you change
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the density of the system, ie. the cost to add a particle to the system. If you have a
noninteracting system described by a set of energy levels, and you have filled the levels up
to some ‘Fermi energy’ EF the cost to add a particle is the next energy level just above the
last level you filled, that is, µ = EF .

That a jump in µ should occur is easy to imagine: Consider a nearly empty lattice and
ask what the energy cost is to add an electron. This cost need not involve U because it
is easy to find a site which is empty. When one gets to half-filling, however, suddenly the
cost to add an electron jumps by U since inevitably an added electron must sit on top of an
electron which is already there. This sudden jump in the cost to add a particle is referred
to as the “Mott gap.”

Returning to thinking about the gap in terms of energy levels, if there is a region of energy
where there are no levels to be filled, then µ has to take a jump from the energy at the top
of the band which has just been filled to the energy at the bottom of the next band. Thus
a jump in µ reflects the existence of a gap (and hence that your system is insulating). Even
when interactions are turned on, and you cannot describe the system in terms of a bunch of
energy levels, a jump in µ still indicates the existence of a gapped, insulating phase. While
band and Mott insulators are characterized by gaps at the Fermi level, ‘Anderson insulators’,
arising from disorder, can have a finite N(EF ), as we shall discuss in the next section.

Half-filling ρ = 1 occurs when µ = U/2. Because half-filling is so often studied, it is
convenient to write the Hubbard Hamiltonian as,

H = −t
∑

〈j,l〉σ
c†jσclσ + U

∑

j

(nj↑ −
1

2
)(nj↓ −

1

2
)− µ

∑

j

(nj↑ + nj↓) (9)

This just corresponds to a shift in the chemical potential µ by U/2. When this is done,
half-filling conveniently occurs always at µ = 0 for any value of t, T, U on a bipartite lattice.
To emphasize, the properties of this ‘new’ model are identical to the old one, if one compares
them at the same density. It’s just that the chemical potentials used to get those densities
are offset.

Exercise 7: Write expressions for Z, E and ρ at t = 0 with this new convention for the inter-
action term in the Hubbard model. You should notice that they are a bit more symmetric
looking at µ = 0.

A fundamental physical quantity in the Hubbard model is the ‘local moment’. Formally,
this quantity is defined by,

〈m2j 〉 = 〈(nj↑ − nj↓)
2〉. (10)

The local moment is zero if the site is either empty, |0 〉, or has two oppositely pointed spins,
| ↑↓ 〉, but takes the value one if the site has a single electron, | ↑ 〉 or | ↓ 〉.

In Fig. XX, we plot the local moment as a function of U at half-filling for fixed T = 0.5.
As U increases, the local moment rises from its uncorrelated value 〈m2j 〉 = 0.5 which reflects

a uniform mixture of empty, singly occupied, and doubly occupied sites, to the value 〈m2j 〉 =
1.0 which reflects the presence only of singly occupied sites. This is a first indication of the
tendency towards magnetism in the Hubbard model. An obvious question is whether, when
these moments form on individual sites, there is a mechanism for developing correlations
between them.

In Fig. XX we show the energy E = 〈H〉 and the specific heat C = dE/dT for the
half-filled t = 0 Hubbard Hamiltonian, as a function of T for U = 8. C(T ) has a peak at
T ∼ U/3 associated with the suppression of double occupation.
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FIG. 9: Energy (left) and specific heat (right) as functions of temperature T for the single site
Hubbard model with U = 12.

Exercise 8: Show the local moment is related to the ‘double occupancy’ dj = 〈nj↑nj↓〉 by,

〈m2j 〉 = 〈nj↑ + nj↓〉 − 2dj. (11)

At half-filling, the relation between the moment and the double occupancy becomes 〈m2j 〉 =
1 − 2dj. In this case, interpret the evolution of the local moment between the two limits
〈m2j 〉 = 1

2
and 〈m2j 〉 = 1 in terms of what the double occupancy dj is doing.

Having understood the limit of strictly zero hopping, t = 0, it is natural to consider
perturbation theory in t. Indeed, this is a very fruitful approach and connects the half-filled
Hubbard Hamiltonian with the spin- 1

2
Heisenberg model. We will defer a discussion of this

until Section IIB where we consider exact diagonalization where the solution of the two site
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Hubbard Hamiltonian, presented there, can be examined in the limit of small, but nonzero,
t/U .

3. Green’s Functions for the Hubbard Hamiltonian

As we mentioned, the Hubbard Hamiltonian has been extensively studied via Green’s
function methods. While we will not say anything about that method, let us at least
compute the Green’s function in our weak and strong coupling limits.

The one particle Greens function,

Gjn(τ) = 〈cj(τ)c†n(0)〉
cl(τ) = eHτcl(0)e

−Hτ , (12)

is a fundamental quantity in understanding the many body physics of interacting electron
systems. Its momentum space and frequency transform, the spectral function A(ω), yields
the photoemission spectrum, and from it two particle Greens functions which yield the
charge and spin susceptibilities can be obtained.

In the limit of no interactions, Gjn(τ) can be computed analytically.

Exercise 9: Show that at U = 0,

ck(τ) = eHτck(0)e
−Hτ = e−εkτck(0) (13)

You should do this two ways: First show that both expressions give the same result on the
two states |0〉 and |1〉. Next, prove the result using the general theorem that ∂A(τ)∂τ =
[H,A(τ)]. This result immediately follows from the definition A(τ) = eHτA(0)e−Hτ .

Exercise 10: Show that at U = 0,

Gjn(τ) =
1

N

∑

k

eik·(n−j)(1− fk)e
−εkτ . (14)

Notice that G is just a function of the difference n − j, as you would expect for a transla-
tionally invariant Hamiltonian.

Exercise 11: Write a program to evaluate Gjn(τ) numerically at U = 0 for a d = 1 chain and
a d = 2 square lattice. This is a useful calculation to have in checking a DQMC code.

Actually, we have been a little bit sloppy in defining G. Usually in many-body theory
one defines the so-called ‘time ordered’ Green’s function, Gk(τ) = −〈T ck(τ)ck(0)〉 where
the time ordering operator T is defined by

T ck(τ)ck(0) = ck(τ)ck(0) τ > 0

T ck(τ)ck(0) = −ck(0)ck(τ) τ < 0 (15)

This definition of G and associated formalism opens the door into the huge world of dia-
grammatic perturbation theory and its application to the Hubbard model. However, the
next few Exercises take you down the road just a little way.

Exercise 12: Prove that G(τ + β) = −G(τ) for −β < τ < 0.
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Exercise 13: Prove that the result of Ex. 27, that G(τ) is antiperiodic with β requires that
the Fourier transform of G given by

G(τ) =
∑

n

G(i ωn)e
−iωnτ (16)

involves the ‘Matsubara frequencies’ ωn = π(2n+ 1)/β.

Exercise 14: Prove the inversion relation

G(i ωn) =

∫ β

0

dτ

β
G(τ)ei ωnτ (17)

Exercise 15: In Ex. 24 we solved for the time evolution of the fermion operator for H =
εkc

†
kck. Show that the Greens function is given by

Gk(τ) = −e−εkτ (1− fk) 0 < τ < β

Gk(τ) = e−εkτfk − β < τ < 0 (18)

Exercise 16: Using the result of Ex. 30 and the transformation rule of Ex. 29 show that

Gk(i ωn) =
1

i ωn − εk
. (19)

Exercise 17: Another way to get the result of Ex. 31 is to take ∂/∂τ of the definition of the
time ordered Greens function written in the form

Gk(τ) = 〈ck(τ)ck(0)〉 θ(τ)− 〈ck(0)ck(τ)〉 θ(−τ). (20)

Be careful to take the appropriate derivatives of the step functions! Then Fourier transform
both sides and solve for Gk(i ωn).

The approach used in Ex. 32 is the basis of the ‘equation of motion’ method for computing
G. One starts with the definition of G, takes a time derivative, evaluates the resulting
commutators of H with ck and then Fourier transforms. If the Hamiltonian is quadratic in
the fermion operators, then the set of equations closes, even if the different fermion operators
mix. Otherwise, when can introduce an approximate truncation to terminate the hierarchy.

Exercise 18: The ambitious student should use the above procedure to evaluate Gk(i ωn) and
Gd(i ωn) for

H =
∑

k

εkc
†
kck + V

∑

k

(c†kd+ d†ck) + εdd
†d (21)

which describes the mixing of a single impurity orbital (labeled by ‘d’) with a band of
conduction electrons (labeled by ‘k’). This is a model akin to the PAM mentioned earlier.
You will need to write the two definitions of Gk(τ) and Gd(τ), take their τ derivatives,

14
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FIG. 10: Dyson equation and self-energy for the localized (d) electron for the Anderson impurity
model.

and Fourier transform. You’ll end up with two equations in two unknowns (the two Greens
functions). Solving, your result for Gd should be

Gd(i ωn) = −
1

i ωn − εd − V 2
∑

k
1

i ωn−εk

(22)

Exercise 20: In section II.A1 we analyzed the zero coupling limit of the Hubbard Hamilto-
nian. The Greens function for this U = 0 problem, which we have described in section IIA3,
offers the jumping-off place for perturbative studies of the Hubbard, and related, Hamiltoni-
ans which allow us to build up solutions for finite U . If you have some familiarity with those
approaches, you can attempt to rederive the result of Ex. 34 by evaluating the diagrammatic
form of the self-energy, pictured below, by inserting the forms of the U = 0 Greens function
and performing the necessary summations. Plugging into the Dyson Equation

G(k, iωn) = G0(k, iωn) +G0(k, iωn)Σ(k, iωn)G(k, iωn)

G−1(k, iωn) = G−1
0 (k, iωn) + Σ(k, iωn) (23)

should reproduce the Greens function of Ex. 33. In this case, the perturbative Feynman
diagram method, like the equation of motion method, provides an exact expression (ie
correct to all orders in V ). This provides a simple illustration of the method, but it should
be kept in mind that this simple result is highly atypical.

It is also instructive to look at the Green’s function for a single site, that is, the t =
0 Hubbard model. We have previously written down the Hilbert space for this problem
and obtained the partition function and various equal time quantities. Now consider the
calculation of

G↑(τ) = 〈c↑(τ)c†↑(0)〉. (24)

Only the states | 0 0 〉 and | 0 1 〉 contribute to the expectation value since the creation oper-
ator for up electrons needs to see an empty up state. We can easily compute the action of
the sequence of operators on | 0 0 〉:

c↑(τ)c
†
↑(0) | 0 0 〉 = eHτc↑(0)e

−Hτc†↑(0) | 0 0 〉 = eHτc↑(0)e
−Hτ | 1 0 〉

= eHτc↑(0)e
+Uτ/4 | 1 0 〉 = eHτe+Uτ/4 | 0 0 〉 = e+Uτ/2 | 0 0 〉 (25)

and similarly for | 0 1 〉.
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Exercise 21: Complete the calculation begun above to show that,

G↑(τ) =
e+βU/4e−τU/2 + e−βU/4eτU/2

2 eβU/4 + 2 e−βU/4
. (26)

Exercise 22: The Green’s function is related to the spectral density A(ω) by the relation,

G(τ) =

∫ +∞

−∞
A(ω)

e−ωτ

e−βω + 1
dω. (27)

Show that if you plug in

A(ω) =
1

2
( δ(ω − U/2) + δ(ω + U/2) ) (28)

and do the integral you get precisely the G(τ) we computed.

The spectral function of the single site Hubbard model consists of two delta function
peaks separated by U (the Mott gap).

We have discussed the Mott transition from the viewpoint of the development of a plateau
in ρ vs µ at ρ = 1. The connection to insulating behavior was simple: In a dilute lattice
electrons can move without double occupation. However, for an electron to move in a half-
filled lattice in which each site is singly occupied, double occupation must occur. This costs
an energy U . It is plausible to imagine that if U is very large, the electrons will not want to
move at all, and one will have an “Mott” insulator.

The structure of A(ω), evaluated in the t = 0 limit above, which consistes of two delta
functions separated by U , provides another illustration of the opening of a gap and Mott
insulating phenomenon. Though the Mott gap is similar to the way that the cost to add an
electron jumps if there is a gap separating single particle energy bands, it is worth noting
that this analogy goes only so far, and the Mott gap differs in very fundamental ways from
band gaps.

Exercise 23: It is also interesting to compute G and A when there is a local site energy or
chemical potential present. Work with the Hamiltonian H = U(n↑− 1

2
)(n↓− 1

2
)−µ(n↑+n↓).

Show that,

A(ω) = a+ δ(ω − U/2 + µ) + a− δ(ω + U/2 + µ).

a+ = ( eβU/2eβµ + e2βµ )/( 1 + 2 eβU/2eβµ + e2βµ)

a− = ( 1 + eβU/2eβµ )/( 1 + 2 eβU/2eβµ + e2βµ )

by evaluating G(τ) explicitly from its definition. µ now enters both the partition function Z
and the imaginary time propagation. The coefficients a+ and a− are obtained by equating
this expression for G(τ) with what you get from plugging A(ω) into the formula relating G
and A. Notice that at µ = 0 we recover a+ = a− = 1

2
, and that, regardless of what µ, β and

µ are, we always have a+ + a− = 1. Interestingly, the spectral function is not just shifted
by µ as one might have expected. The peak heights are also changed.

Exercise 24: We conclude this section by noting the form of the interaction term in momen-
tum space. Substitute the equation which relates real and momentum space operators for
each of the four real space creation operators in the interaction term of the Hubbard model.
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As with the hopping term, the sum over sites leads to momentum conservation and reduces
the four momentum sums to three. Show that the result is

U

N

∑

k1,k2,k3

c†k1+k2−k3↑c
†
k3↓ck2↑ck1↓.

The physical content of this form is that an up and down electron of momentum k2 and
k1 scatter and emerge with momenta k3 and k1 + k2 − k3, the same total momentum as
initially. One can rewrite the sum over the three momentum variables as,

U

N

∑

k1,k2,q

c†k2+q↑c
†
k1−q↓ck2↑ck1↓.

Here q is seen to be the momentum exchanged in the collision of the two electrons of initial
momenta k1 and k2.

B. Exact Diagonalization

We have considered the limits t = 0 and U = 0. The Hubbard model cannot be solved
exactly when both terms are non-zero. Our next approach is to consider a small cluster of
sites. Let’s start with two sites. The Hilbert space has 16 states, since each site can have
four possibilities: no electrons, an up electron, a down electron, or both. However, since H
commutes with N↑ and N↓ we actually have to consider only much smaller matrices.

Exercise 28: Show that the sixteen dimensional Hilbert space of the two site Hubbard model
factorizes into four spaces of dimension one, four spaces of dimension two, and one space of
dimension four. Construct the matrices by applying H to each of the vectors.

Exercise 29: Diagonalize the matrices of the preceding Exercise. Even the four dimensional
matrix can be done by hand. Compute the partition function and the energy.

Earlier, when we studied the one site Hubbard model, we learned that magnetic moments
form when the ratio U/T is large. Put another way, thermal fluctuations can destroy mag-
netic moments, while interactions cause them to form. This was at t = 0. We will now see
that ‘quantum fluctuations’- the motion of the electrons which occurs when the hopping t
is made nonzero, also competes with moment formation.

Exercise 30: Compute the local moment 〈m2〉 in the sector with one up and one down
electron for low temperature. Plot 〈m2〉 as a function of U/t. Interpret your result in terms
of the effect of U and t on moment formation.

We have now learned that U drives the formation of moments on the sites of our lattice
and that thermal fluctuations (T ) and quantum fluctuations (t) both try to inhibit moments.
We conclude this discussion of the two site case by pointing out something about the order
of magnetic moments between sites in the Hubbard model.

Exercise 31: Compute the energy difference between the two states | ↑ ↑〉 and | ↓ ↓〉 (which
have the same energy) and the lowest energy state of the sector which connects the states
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| ↑ ↓〉, | ↓ ↑〉, | ↑↓ 0〉, and | ↓↑ 0〉. Show that the lowest energy state in this N↑ = N↓ = 1
sector is lower in energy by an amount proportional to J = t2/U .

The result of the preceding Exercise tells us something about magnetic order in the
Hubbard model. In the half-filled sector, one elctron per site, the states with antiferromag-
netic order (neighboring sites have electrons with opposite spins) are lower in energy than
ferromagnetic ones (neighboring sites have parallel spins). Although this has come out of
consideration of only two sites, it is a general feature: The Hubbard model has antiferromag-
netic order at half-filling. Indeed, the antiferromagnetic ‘exchange’ energy scale J = t2/U
that we found is precisely the energy scale for this order even in the thermodynamic limit.

In addition to antiferromagnetism, one can see the Mott gap in this little two site model
by looking at the eigenvalues of the sector with one up and one down electron. As you
found in Exercise x, there are two eigenvalues close to −U/2 and two close to +U/2. More
precisely, the eigenvalues are shifted by values involving the hopping t away from ±U/2.
The separation U between ±U/2 is the Mott gap, and, as one increases t the separation
becomes less and less clear. This puts a very simple quantitative face on the statement that
when U is large one has an insulator (a Mott gap) but when U is small, the electrons can
still move around.

This analysis of the two site model can be extended quite easily to somewhat larger
lattices by writing a program which generates the matrix elements of H and diagonalizes
the resulting matrices. In fact, this is one important way that information has been gained
concerning the Hubbard model. Although it is limited to 10-20 sites (depending on how
much computational effort one is willing to put up with) the results obtained are exact and
any possible quantity, including time dependent ones, can be computed.

Exercise 36: Write a program to diagonalize the four site Hubbard model. Compute E and
〈m2〉.

In these notes, the idea of diagonalization has arisen twice. First, we pointed out that
in the absence of interactions, the Hamiltonian is quadratic in the fermion creation and de-
struction operators, H =

∑

i,j c
†
ihi,jcj, and we can solve the Hubbard model by diagonalizing

the matrix h. Second, in the discussion immediately above, we talked about constructing
the matrix for H when the interactions are nonzero. However, there is a very important
difference in the two usages of the term “diagonalization.” This is emphasized in the Exercise
which follows.

Exercise 37: Compare the computational cost of the diagonalizations in each of the two
cases, U = 0 and U 6= 0. How big are the matrices involved for N sites? How large a system
could you study in both cases?

We took the first steps towards an exact diagonalization solution of the Hubbard model
when we discussed the extreme strong coupling limit, t = 0, which divided the lattice into
a collection of single sites.

The following routine
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FIG. 11: Qualitative picture of Stoner construction. δN down spin electrons are converted to up
spin electrons, at a cost in kinetic energy δK = +δnδE. If this is less than the potential energy
lowering, a ferromagnetic state is favored.

C. Mean Field Theory

Stoner’s Picture: Stoner developed a very simple picture of ferromagnetism based on the
competition between the kinetic energy cost of making the up and down spin electron num-
bers different and the associated potential energy gain. The basic idea is the following:
Because of the Pauli principle the way to occupy a given set of energy levels with the lowest
energy is to start filling from the bottom and put two electrons, one of each spin, in each
level. Otherwise, if you make the numbers of up and down electrons unequal, and don’t fill
each level with two electrons, you have to occupy higher energies.

However, if you make the number of up and down electrons unequal, you can reduce
the potential energy: Consider the limit of complete spin polarization where there are no
electrons of one spin species. Then, obviously, the potential energy is zero.

Perhaps this competition can lead to non-trivial effects. Consider a system with density
of states N(E) and both up and down spin electrons filling the energy levels up to the same
maximum called the ‘Fermi level’ EF . The density of up and down electrons is equal. We’ll
call it n. Let’s compute the change in energy which results from a reduction in the density of
down spin electrons by δn and at the same time an increase the number of up spin electrons
by δn. The potential energy changes by,

δP = U(n+ δn)(n− δn)− Un2 = −U(δn)2.

If we shift an extra δn electrons into the up group, we will occupy energy levels above the
original EF . Recalling the definition of the density of states as the number of levels at an
energy E we see that N(E) = dN/dE whence δn = N(EF )δE. This tells us how big the
range of energies is above EF we are filling in terms of δn. Likewise, we are emptying levels
below EF that used to be occupied by down spin electrons. The net result of this process
is to shift δn electrons up in energy by an amount δE. The change in the kinetic energy is
then,

δK = +δnδE = +
1

N(EF )
(δn)2.
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Putting these two expressions together,

δE = δP + δK = (−U +
1

N(EF )
)(δn)2 = (−UN(EF ) + 1)

(δn)2

N(EF )
.

We see that if UN(EF ) > 1 the total energy change δE < 0, so it is favorable to have
the up and down electron densities different and hence favorable to have ferromagntism.
This is called the Stoner criterion. It tells us that magnetism is favored by large electron
interactions. As we shall see, this simple calculation yields results in precise agreement with
mean field theory.

Mean Field Theory: Ferromagnetism: We have considered the Hubbard model in the simple
limits of no hopping (t = 0), no interactions (U = 0), very small system sizes (one and two
sites), and using Stoner’s approach. We now turn to our first ‘serious’ calculation of the
Hubbard model- mean field theory. Our goal is to study ferromagnetism.

What is mean field theory? We commented in an earlier section that a Hamiltonian
which is quadratic in the fermion creation and destruction operators, H =

∑

i,j c
†
ihi,jcj, can

be solved by diagonalizing the matrix h. Mean field theory is a method which produces such
a quadratic Hamiltonian from a model like the Hubbard model which has quartic terms
Uc†↑c↑c

†
↓c↓ involving four fermion creation and destruction operators. The approach begins

by expressing the number operators as an average value plus a deviation from the average:

ni↑ = 〈ni↑〉+ (ni↑ − 〈ni↑〉)
ni↓ = 〈ni↓〉+ (ni↓ − 〈ni↓〉). (29)

Substituting these expressions into the Hubbard interaction term, and dropping the ‘small’
term which is the product of the two deviations from the average yields,

ni↑ni↓ = [〈ni↑〉+ (ni↑ − 〈ni↑〉)][〈ni↓〉+ (ni↓ − 〈ni↓〉)]
≈ 〈ni↑〉〈ni↓〉+ 〈ni↓〉(ni↑ − 〈ni↑〉) + 〈ni↑〉(ni↓ − 〈ni↓〉)]
= ni↑〈ni↓〉+ ni↓〈ni↑〉)− 〈ni↑〉〈ni↓〉. (30)

The interpretation of this expression is simple. The up spin electrons interact with the
average density of down spin electrons, and similarly the down spin electrons interact with
the average density of up spin electrons. These two terms overcount the original single
interaction term, so the product of the average densities is subtracted off.

Within this mean field replacement, the Hubbard Hamiltonian is now quadratic, and
takes the form (in one dimension)

H = −t
∑

lσ

(c†lσcl+1σ + c†l+1σclσ) + ni↑〈ni↓〉+ ni↓〈ni↑〉)− 〈ni↑〉〈ni↓〉. (31)

Since H is quadratic, its solution is a matter of diagonalizing an appropriate matrix. Specif-
ically, for the case of ferromagnetism, one imagines that the average occupation is indepen-
dent of spatial site i but allowed to be different for the two spin species. That is, 〈ni↑〉 = n+m
and 〈ni↓〉 = n−m. Our goal is to calculate the energy E for fixed n as a function of m and
see whether the minimum is at m = 0 (paramagnetic state, no ferromagnetism) or m 6= 0
(ferromagnetism). Because the expectation values 〈ni↑〉 and 〈ni↓〉 have such a simple, site
independent form, the energy levels can easily be written down. (See Exercise 23.) They
are,

ε↑k = U(n−m)− 2t cosk

ε↓k = U(n+m)− 2t cosk. (32)
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Again, I have assumed we are in one dimension.
One merely has to take the various possible fillings of the lattice with up and down

electrons and add these levels up. That is, we proceed as follows:

(1) Fix the lattice size, N , to some fairly large value, for example N = 128 or greater.

(2) Choose a total particle number Ntot and on-site repulsion U .

(3) Loop over N↑ = 0, 1, 2, . . . .Ntot. For each choice, set N↓ = Ntot − N↑. (Actually, your
answers should be symmetric on interchange of N↑ and N↓, so you really only need do half
the values N↑ = 0, 1, 2, . . . .Ntot/2.) Define the densities, n↑ = N↑/N and n↓ = N↓/N .

(4) Loop over the N allowed momentum values k = 2π/N{−N/2 + 1,−N/2 + 2, . . .N/2}.
Fill up the lowest N↑ and N↓ of the energy levels. That is, add the associated energy values
to some accumulator which stores the total energy. Recall that the levels are given by
ε↑(k) = −2 t cosk + U〈n↓〉 and ε↓(k) = −2 t cosk + U〈n↑〉.

(5) Finally, normalize your energy accumulator to the number of sites (divide by N) and
add in the term −U〈n↑〉〈n↓〉. This gives the energy for the given N↑ and N↓ = Ntot − N↑.
Make a list of them and see which is lowest.

(6) Repeat the calculation for different U and Ntot to get the phase diagram.

I will now show some real code for this problem and also a few results from running it.
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The code

implicit none
integer i,N,Nup,Ndn,Ntot
real*8 t,U,tpin,k,ekup,ekdn,denup,dendn
real*8 efup,efdn,eftot

write (6,*) ’N,Ntot,t,U’
read (5,*) N,Ntot,t,U
tpin=8.d0*datan(1.d0)/dfloat(N)
do 1000 Nup=0,Ntot,2

Ndn=Ntot-Nup
denup=dfloat(Nup)/dfloat(N)
dendn=dfloat(Ndn)/dfloat(N)

efup=0.d0
efdn=0.d0
do 200 i=-N/2+1,N/2

k=tpin*dfloat(i)
if (i.ge.-Nup/2+1.and.i.le.Nup/2) then

ekup=-2.d0*t*dcos(k)+U*dendn
efup=efup+ekup

endif
if (i.ge.-Ndn/2+1.and.i.le.Ndn/2) then

ekdn=-2.d0*t*dcos(k)+U*denup
efdn=efdn+ekdn

endif
200 continue
eftot=(efup+efdn)/dfloat(N)-U*denup*dendn

write (36,990) Nup,Ndn,eftot
990 format(2i6,f16.6)

1000 continue

end

Results for ρ = 1/2
Ferromagnetism vs. Paramagnetism: Here are results for one quarter filling, that is, a density
ρ = ρ↑+ρ↓ =

1
2
electrons per site. (This is one quarter of the maximal density of two electrons

per site.) The magnetization m is defined such that m = (ρ↑ − ρ↓)/(ρ↑ + ρ↓).
You see that at U/t = 2 the optimal energy is paramagnetic: the energy E is minimized

at m = 0. This is still the case at U/t = 4 (see next page), but the energy of the spin
polarized solutions (m nonzero) are getting much closer to m = 0. (Note the energy scale.)
When U/t = 4.2 the energies for large |m| have started to turn down and are lower than
intermediate m, though E(m = 0) is still lowest. U/t = 4.4 has just gone ferromagnetic.

Notice that the transition is first order. That is, as U/t increases we jump suddenly
from a minimum at m = 0 to a minimum at m = ±1. Another possibility would have
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FIG. 12: Left: Energy versus magnetization of d = 1 Hubbard model at quarter filling, ρ = 1
2 (128

electrons on an N = 256 site lattice). A paramagnetic state, M = 0, is favored at U = 2.0t , and
a ferromagnetic one, with full spin polarization M = 1, at U = 6.0 t. Right: Same as left panel,
except in the transition region U ≈ 4.0 t. The Stoner critierion gives Ucrit =

√
2π t ≈ 4.44 t.

been a second order transition in which the minimum at m = 0 gradually shifts to larger m
and partially polarized solutions are best for a range of U/t. Without examining other MF
solutions (like antiferromagnetic ones) we cannot tell if this first order transition is ‘real’
or simply occurs because we have restricted to ferromagnetic solutions and something even
lower in energy is actually winning.

Consistency with Stoner Criterion: We derived the Stoner Criterion for Ferromagnetism
UN(EF) > 1. For the d=1 Hubbard model we can compute,

N(E) = 2
∑

k

δ(E − εk) = 2

∫

dk

2π
δ(E − εk) (33)

with εk = −2tcos(k). A simple calculation gives

N(E) =
1

π
√
4t2 − E2

. (34)

(You also did this in Exercise x.) This is the density of states for a single spin species, which
is what was used in the Stoner criterion.

We also need the relation between the density ρ and the Fermi energy EF:

ρ = 2

∫ EF

−2t
dE N(E). (35)

I put in the factor of two for spin here, so that when I plug in ρ I use the total density
(including both spin species). This yields,

ρ =
2

π
cos−1(−E

2t
). (36)

23



You can check this latter relation obeys the expected limits: ρ = 0 when EF = −2t, ρ = 1
when EF = 0, and ρ = 2 when EF = +2t.

Putting these equations together, we can get the density of states at EF for a given filling:

N(ρ) =
1

2πt

1

sin(πρ/2)
(37)

For half-filling, ρ = 1 we see that N(ρ = 1) = 1
2πt

and hence Ucrit = 2πt. For quarter-filling,

ρ = 1
2
we see that N(ρ = 1) = 1√

2πt
and hence Ucrit =

√
2πt = 4.44t. This is in pretty good

agreement with Figures 1–5 which showed us that Ucrit was around 4.4t. I suspect that the
slight disagreement (Figure 4 suggests Ucrit a bit less than 4.4t while Stoner gives Ucrit a bit
more than 4.4t) is due to the fact that Figures 1-5 were run on N = 256 site lattices. That
is, I believe the small difference is likely a finite size effect.

Exercise 25: Write a code to do mean field theory for the d = 1 Hubbard model as described
above. Compute the critical U above which the ferromagnetic state is lower in energy than
the paramagnetic one for Ntot = 3N/4.

Exercise 26: Verify that the critical U you obtained for ferromagnetism precisely agrees with
the Stoner criterion. You will need to use the value for the density of state obtained in
Exercise x.

There is another way to write the code, which you might find easier. Work in the grand-
canonical ensemble. That is, provide a chemical potential µ and then compute N↓ and N↑
by filling those levels which are below µ. The density then comes out of the choice of µ,
and, indeed, you will need to tune µ to get the density you desire. (This process is a bit
annoying.)

One advantage of this method is that one can let the code find the lowest energy config-
uration, instead of searching through all the possible choices of magnetization. This is done
in the usual way: Start at some densities n↑, n↓, compute E(n↑, n↓), and then alter n↑, n↓, to
reduce E (using your favorite gradient descent algorithm or whatever). Continue iterating
until you reach the minimum.

Another reason this second, ‘grand canonical’, approach is more convenient is that it
is easy to do things at finite temperature. One simply replaces the process where one
accumulates the energies of all levels εσ(k) < µ with accumulating εσ(k) times the Fermi
function 1/[1 + eβ(εσ(k)−µ)]. (Likewise, one puts this Fermi function in the computation of
the density). Another reason the grand canonical approach is sometimes preferable is that
it also generalizes better to states where the lowest energy is more complex, ‘striped phases’
etc, where the density of electrons is allowed to depend in a completely general way on the
lattice site and spin species. In that situation, though, there is usually no longer an analytic
form for the energy levels and one has to diagonalize a matrix to get them.

Exercise 27: Write your own code to do mean field theory for the d = 1 Hubbard model in
the grand canonical ensemble as described above. Again compute the critical U above which
the ferromagnetic state is lower in energy than the paramagnetic one for Ntot = 3N/4.

Before concluding with the discussion of mean field theory, it should be emphasized that
this mean field approach, while very useful in yielding insight into the possible phases of the
system, is a completely uncontrolled approximation. Mean field theory overestimates the
tendency for ordered phases, and can (and does) predict magnetic order where none occurs.
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Even if a particular phase transition is correctly predicted by mean field theory, the details
of the transition (critical temperature, critical exponents, etc) are usually incorrect.
Mean Field Theory: AntiFerromagnetism: The basic idea to look for antiferromagnetism in
the Hubbard model within mean field theory is the same as for ferromagnetism. The thing
that is just slightly more difficult is to figure out the energy levels.

First, let’s define precisely what an antiferromagnetic configuration is. Recall that a
paramagnetic configuration has the same exact density nlσ = n regardless of site l or spin σ,
and that a ferromagnetic configuration allows the density to depend on σ but not l: nl↑ = n↑,
and nl↓ = n↓ (see above).

An antiferromagnetic configuration allows a simple spatial dependence in which the den-
sities alternate: nl↑ = n+ (−1)lm, nl↓ = n− (−1)lm. That is, the even sites have a surplus
of up spin electron density: neven ↑ = n+m, neven ↓ = n−m. The odd sites have a surplus of
down spin electron density: nodd ↑ = n−m, nodd ↓ = n +m. Note that the total number of
up and down electrons in the whole system is the same, nN , and that each site has the same
density 2n, once the densities of the individual spin species are summed. More generally
one might have some sort of mixed ferromagnetic and antiferromagnetic configuration.

The form of the Hamiltonian in mean field theory is, H =
∑

j,l c
†
jσMσ(j, l)clσ, where

Mσ(j, l) has −t just above and below the main diagonal, with M↑(l, l) = U(n− (−1)lm), or
M↓(l, l) = U(n + (−1)lm) along the diagonal. The eigenvalues for this sort of tridiagonal
matrix when the diagonal is constant (m = 0). When m is nonzero, the eigenvectors of
momentum k and k + π are mixed (see below for further discussion) and the eigenvalues

become: E(k) = ±
√

(−2 t cosk)2 + (Um)2 +Un. Here k is now defined in a ‘reduced zone’,
k = 2π/N{−N/4 + 1,−N/4 + 2, . . .,+N/4}, so that there are still N eigenvalues as there
should be for this N dimensional matrix (two eigenvalues for each k, but only half as many
k. The eigenvalues are the same for σ =↑ and σ =↑.) You might want to check that these
eigenvalues reduce to the old ones when m = 0. Can you also check the eigenvalues make
sense when t = 0? (Check that all the counting (degeneracies) are correct!)

The process for computing the energy of an antiferromagnetic configuration is the same
as the steps (1–5) above, with the replacement of the ferromagnetic eigenvalues by the
antiferromagnetic ones. Since we are assuming the total up and down densities over the
whole lattice are identical, one no longer loops over different N↑. However, one does have to
loop over different m. More precisely, one fixes n = Ntot/2 and then tries m = 1/N, 2/N . . .,.

One reason this problem is worth doing is because of its formal connections to so many
other problems in solid state physics. The most obvious is the opening of a gap in an energy
band by a periodic potential V (G) with wavevector G (e.g. see Ashcroft and Mermin). In
our problem we can think of the up spin electrons as moving in a periodic potential which
has period π resulting from the oscillating down spin density (and vice-versa). A gap is
opened at k = ±π/2. There is also a connection to simple phonon problems where one
makes the masses or spring constants vary: m1,m2,m1,m2, . . . or k1, k2, k1, k2, . . .. Again,
the single phonon dispersion curve for uniform masses and springs breaks into two branches,
optic and acoustic. Some of you are presently doing this problem in Physics 240B. There
are many other examples.
Sample Code:

implicit none
integer i,N,Ntot,istag
real*8 t,U,tpin,k,ek,mstag
real*8 rho,Umstag,Urho
real*8 eaf,eaftot,lambdaminus

write (6,*) ’N,Ntot,t,U’
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FIG. 13: Left: Energy versus staggered magnetization of d = 1 Hubbard model at quarter filling,
ρ = 1

2 (128 electrons on an N = 256 site lattice). A paramagnetic state, Ms = 0, is favored at
U = 2.0 t and U = 4.0 t. Nonzero staggered magnetization with partial staggered spin polarization,
Ms = 21/48, has lower energy than Ms = 0 at U = 8.0 t. Right: However, the ferromagnetic
solution has yet lower energy for this filling and interaction strength.

read (5,*) N,Ntot,t,U
write (36,*) Ntot/2+1

tpin=8.d0*datan(1.d0)/dfloat(N)
rho=dfloat(Ntot)/dfloat(N)
Urho=U*rho/2.d0

do 1000 istag=0,Ntot,2

mstag=dfloat(istag)/dfloat(N)
Umstag=U*mstag/2.d0

eaftot=0.d0
do 200 i=-Ntot/4+1,Ntot/4

k=tpin*dfloat(i)
ek = -2.d0*t*dcos(k)
lambdaminus=-dsqrt(ek*ek+Umstag*Umstag)
lambdaminus=lambdaminus+Urho
eaftot=eaftot+lambdaminus

200 continue
eaftot=2.d0*eaftot/dfloat(N)-U*(rho*rho-mstag*mstag)/4.d0

write (36,990) istag,eaftot
990 format(i6,f16.6)

1000 continue

end

AntiFerromagnetism vs. Paramagnetism: Let’s consider again the case of one quarter filling,
that is, a density n = n↑ + n↓ = 1

2
electrons per site. However now we will look for
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FIG. 14: Left: Energy versus magnetisation and staggered magnetization of d = 1 Hubbard model
with U = 4.0t and at half filling, ρ = 1 (256 electrons on an N = 256 site lattice). Nonzero
staggered magnetization with partial staggered spin polarization, Ms = 21/48, has lower energy
than Ms = 0. Unlike the quarter filled case of the right panel of Fig. 8 this antiferromagnetic solu-
tion is lower in energy than ferromagnetic ones. Right: Staggered magnetization which minimizes
the energy, when restricted to the antiferromagnetic sector, as a function of filling, for different
interaction strengths. In all cases, we need to check to see whether ferromagnetic solutions might
be yet lower. Steps in the curves are a result of the finite lattice size.

antiferromagnetic behavior. The staggered magnetization ms is defined such that the up
and down spin densities are n↑ = n+ (−1)ims and n↓ = n− (−1)ims.

For U = 2 the paramagnetic solution ms=0 has lowest energy. We know too from the
preceding note that m = 0 is the lowest of the ferromagnetic energies. Notice as a check on
the codes that one can compare with Figure 1 and see that E(ms = 0) = E(m = 0).

As before, we now start cranking up U . Figures 2 and 3 show the energy for U = 4 and
U = 8 respectively. We see at U = 8 that a nonzero ms is better than zero ms. However,
the state is not actually antiferromagnetic because (Figure 4) the ferromagnetic energy is
yet lower. (Again, check the fact that E(ms = 0) = E(m = 0). Really I should plot the
ferromagnetic and antiferromagnetic data, Figures 3 and 4, on the same graph to make
comparisons nicer.)

Results for n = 1
The preceding results suggest that at quarter filling, ρ = 1

2
, the d = 1 Hubbard model

is more prone to ferromagnetism than antiferromagnetism. Let’s look at half-filling, ρ = 1,
where antiferromagnetism tends to be most stable. Sure enough, Figures 5 and 6 show the
antiferromagnetism is optimal (for U = 4). In fact, here, the best ms is the biggest it can
be.
Phase boundary: Our ultimate objective could be to analyze a bunch of energy curves, both
ferro- and antiferromagnetic, for different densities ρ and couplings U and figure out the
whole phase diagram in the ρ−U plane. As a first step in this direction, Figure 7 shows the
value of the staggered magnetization which minimizes the energy, as a function of density
for different values of U . For small U = 2, the energy is minimized in the paramagnetic
phase ms = 0 until close to half filling (ρ = 1). As U increases, so does the regime of
antiferromagnetism. For U = 16 the optimal staggered magnetization becomes nonzero
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around ρ = 0.24. So looking at the five points where ms becomes nonzero begins to give
us a sense of the antiferromagnetic phase boundary. We have to do similar analysis for the
ferromagnetic case (and compare energies) to complete the picture.
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III. DISORDER IN THE ABSENCE OF INTERACTIONS

A. The Anderson Transition

The development of insulating behavior of noninteracting electrons in a random potential
is called ‘Anderson localization.’ For concreteness, let’s consider the Hubbard Hamiltonian at
U = 0 but with a spatially varying (random) chemical potential −µ∑jσ njσ → −∑

jσ µjnjσ

As for phase transitions in general dimensionality plays a key role in whether the insulator-
metal transition occurs. In one dimension, it is fairly easy to see that all states are localized
by an arbitrarily small amount of randomness. Only the situation where there is zero disorder
is metallic.

The celebrated ‘gang-of-four’ paper9 showed the much less trivial result that the same
applies in two dimensions. As discussed previously, this was the basis for the conjecture that,
perhaps, even when interactions are included, there is no metallic phase in two dimensions.

So, it really only in three dimensions that the generic picture of the coexistence of localized
and delocalized states, separated by a mobility edge, is really the case.

B. A Digression into Non-Hermiticity: The Hatano-Nelson Model

The Anderson transition, in which the eigenstates of of noninteracting electrons are local-
ized by disorder, has been the subject of considerable theoretical and numerical work over
the last thirty years45. By now it is well-understood that in one and two dimensions, any
amount of randomness will localize all the eigenstates, while in three dimensions, a ‘mobil-
ity edge’ whose position depends on the disorder strength, separates localized eigenvectors
whose eigenvalues lie at the edges of the eigenvalue distribution from extended eigenvectors
whose eigenvalues lie near the center9.

Various refinements of this problem have also garnered considerable attention. Perhaps
the most famous is the question of the influence of many-body correlations on Anderson
localization and, in particular, the possibility of a metallic phase in a disordered, interacting
two dimensional system2. This is a very difficult problem whose resolution is still under
debate3.

However, another important line of work has retained the non-interacting character of
the particles, and instead focused on a non-Hermitian generalization of the Anderson Hamil-
tonian, the Hatano-Nelson model46. In one dimension,

H = − t
2

N
∑

l=1

(ehc†l+1cl + e−hc†l cl+1) +
∑

l

µlc
†
l cl .

Here c†l (cl) are the usual fermion creation(destruction) operators. The parameter h controls
the asymmetry between the hopping amplitudes in the +x and −x directions, while µl are a
collection of random site energies which we will choose here to have a uniform distribution
on [−∆/2,+∆/2]. N is the number of lattice sites. It is important to note that the periodic
boundary conditions which connect the two ends of the lattice have a fundamental influence
on localization, as we shall discuss further below. To set the scale of energy, we will choose
the hopping parameter t = 1 throughout this paper,

Such non-Hermitian Hamiltonians have been used to describe a number of phenomena,
including the motion of flux lines in disordered type-II superconductors46 and nuclear decay,
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dissipative systems, and quantum chromodynamics47–55. They have also provided useful
insight into the Anderson localization transition46,56.

A final line of inquiry which motivates the present work concerns tight-binding lattice
models with a ‘superlattice potential’

H → H +∆H ∆H = V
∑

l

cos(
2πω

N
l) c†l cl.

Here recent interest has arisen from experimental studies of optically trapped atoms in which
a periodic potential is applied in addition to the optical lattice itself, creating a regular
array of trapping potentials for the atoms57–60. We note that the relation between random
potentials and problems with several periodic potentials of incommensurate frequency has
also been examined61–63.

In this paper we bring together the two issues of non-symmetric hopping and a superlat-
tice potential. Specifically, we study the eigenvalues and eigenvectors of a one-dimensional
Hatano-Nelson model with an additional periodic potential V . We first review some of the
properties of the original, separate, models, before turning to our new results whch combine
the two.

We begin with Hatano-Nelson Hamiltonian (V = 0). When ∆ = 0, the eigenvalues are
easily obtained,

λ(k) =
1

2
(eheik + e−he−ik) .

Here 0 < k < 2π. The eigenvalues lie on an ellipse in the complex plane, centered at the
origin, with a semimajor axis of length 2 coshh aligned with the real axis, and a semiminor
axis of length 2 sinhh aligned with the imaginary axis. When disorder is turned on, ∆ 6= 0,
lines of real eigenvalues extend outward from this ellipse. Fig. 1 shows the eigenspectrum
for h = 0.2 and ∆ = 2.

While the present paper concerns one dimension only, we note that in higher dimension,
the central eigenvalues become space filling and spread into a continuous eigenvalue ‘blob’.
Wings of real eigenvalues extend from the blob, just as in the one dimensional case.

The crucial observation to make is the relationship between the location of the eigenvalue,
on the ellipse (complex) or the wings (real), and the nature of the associated eigenvector.
Consider the eigenvalue problem in component form,

− t
2
eh ψl+1 + µl ψl −

t

2
e−h ψl−1 = λψl .

Performing the ‘gauge transformation’ ψl = e−hlψ̃l yields

− t
2
ψ̃l+1 + µl ψ̃l −

t

2
ψ̃l−1 = λ ψ̃l .

h has vanished from our equation and we precisely recover the eigenproblem of the (Her-
mitian) Anderson problem! However, this argument fails when the periodic boundary con-
ditions are included. We see that, perhaps not surprisingly for a problem concerning local-
ization and transport, that boundaries are crucial to the physics. The eigenvalues of the
non-Hermitian matrix of the Hatano-Nelson Hamiltonian are real and identical to those of
the Anderson Hamiltonian, when open boundary conditions are used, but differ dramatically
otherwise. (Interestingly, even in the case when periodic boundary conditions are included,
the gauge transformation allows us to accumulate all the factors of h in a single link, if we
so desire.)
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FIG. 15: Left: Eigenspectrum of the Hatano-Nelson Hamiltonian with h = 0.2 and ∆ = 2. The
eigenvalues are located on a ellipse centered at the origin, with two ’wings’ extending out along
the real axis. Right: Corresponding (normalized) participation ratios: Pn/N . Numerical results
were obtained for N = 500, 1000, 2000 sites, averaging over ten disorder realizations.

Actually, this statement concerning the role of boundary conditions may be a bit too
strong. If one looks at the ‘pseudospectrum’ of the Hatano-Nelson model in the open bound-
ary condition case, one observes clear indications of the physics of the periodic case in the
form of values of λ for which det(H − λI) becomes arbitrarily small and which lie on an
ellipse in the complex plane64. [Bai- Is this statement correct?]

Let us now suppose that we have a localized eigenvector (and periodic boundary condi-
tions). We can perform a gauge transformation which moves all the h factors away from
the region of the lattice where the eigenvector is non-zero. It is then plausible that the
eigenvector will be described by the same properties as the Anderson Hamiltonian. Hence
its eigenvalue will be real. We thus conclude that the eigenvectors whose eigenvalues lie
on the real wings are localized, while those on the ellipse, with complex eigenvalues, are
delocalized. Fig. 1(right) shows the participation ratio,

Pn = (
N
∑

l=1

|ψn
l |4 )−1

a measure of the number of components which are ‘large’ for the eigenvector ψn with com-
ponents ψn

l . Parameters are the same as Fig. 1.
We turn now to the superlattice model. The eigenspectrum of the Hermitian (h = 0)

Hamiltonian of tight-binding electrons in an additional periodic potential is again easily
determined in the absence of randomness ∆ = 0. For the highest frequency potential,
ω = N/2, in which the periodic potential alternates positive and negative on the odd and
even sites respectively, we have the familiar result,

E(k) = ±
√
cos2k + V 2

in which the eigenspectrum has a gap 2V at half-filling. Here k is in the reduced Brillouin
zone −π/2 < k < +π/2.
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The case of lower frequencies ω is less commonly quoted, but almost equally easy to write
down65. Instead of the periodic potential mixing two momentum values k and k+π, it mixes
a larger number N/ω. That is, in momentum space, the Hamiltonian breaks into ω blocks,
each of size N/ω, with matrix elements

Hk
l,l′ = 〈 k + lQ | Ĥ | k + l′Q 〉

= −t cos(k + lQ) δωl,l′ + V δω|l−l′|,1 ,

where Q = 2πω/N and δωl,l′ = δl,l′modN/ω. The eigenvalues of H give the energy bands.

C. Pseudospectra
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IV. PRESCRIPTION FOR DETERMINANT QUANTUM MONTE CARLO

A. Basic Formalism

The bulk of the physics I will discuss in these lectures is obtained with DQMC. I hope
to convince you it is, within its limitations, a very powerful approach to the physics of the
Hubbard Hamiltonian. This suggests that a possible goal for students here might be to
write, or at least begin to write, a DQMC code. To be honest, this is a very ambitious goal,
but to have any chance for it to be realistic, I would like to begin with the prescription for
writing a DQMC program, literally by writing down some ‘pseudo-code’ for it in the same
way we did for diagonalization. Appendix 3 covers some of the background derivations.

Besides the parameters t, U, µ in the Hubbard Hamiltonian Ĥ, the physics is of course
also determined by the inverse temperature β = 1/T . For reasons made clear in Appendix
3, in DQMC it is necessary to divide β into L ‘imaginary time intervals’, β = L∆τ . The
length of each interval ∆τ should be chosen such that t U (∆τ)2 < 1/10.

1. Matrices Determining the Boltzmann Weight

We first consider the part of Ĥ which includes the terms which are quadratic in the
fermion creation and destruction operators, eg the hopping and site energies,

K̂ =
∑

σ

(

c†1σ c†2σ · · ·
)











k11 k12 · · ·
k21 k22 · · ·
...

...
. . .





















c1σ

c2σ
...











(38)

k is defined to be the NxN matrix with elements ∆τ kij.
As an example, for a one dimensional Hubbard model with N = 6 sites, nearest neighbor

hopping, no disorder, and periodic boundary conditions,

k = ∆τ



























−µ −t 0 0 0 −t
−t −µ −t 0 0 0

0 −t −µ −t 0 0

0 0 −t −µ −t 0

0 0 0 −t −µ −t
−t 0 0 0 −t −µ



























(39)

Fill an array s(i, l) (the ‘Hubbard-Stratonovich field’) randomly with values ±1. The
first index i goes from 1 to N , and the second index l goes from 1 to L. Define a set of L
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diagonal matrices, each of dimension N ,

v↑(l) = λ





















s(1, l) 0 0 0 · · ·
0 s(2, l) 0 0 · · ·
0 0 s(3, l) 0 · · ·
0 0 0 s(4, l) · · ·
...

...
...

...
. . .





















(40)

Here the parameter λ is given by coshλ = eU∆τ/2. The matrices for the down spin electrons
differ only by a sign: v↓(l) = −v↑(l).

2. Initializing The Greens Function

Compute the up and down Green’s functions,

Gσ = [ I + ek evσ(1) ek evσ(2) ek evσ(3) · · · ek evσ(L) ]−1 (41)

Here I is the N dimensional identity matrix.

Updating the Hubbard-Stratonovich Field

Suggest a change in the Hubbard Stratonovich field on site i = 1 of imaginary time slice
l = L by computing the quantity,

d↑ = 1 + ( 1− [G↑]ii ) ( e
−2λ s(i,l) − 1 )

d↓ = 1 + ( 1− [G↓]ii ) ( e
+2λ s(i,l) − 1 )

d = d↑d↓ (42)

Throw a uniformly distributed random number, 0 < r < 1. If r < d, update the Hubbard
Stratonovich field on site i of imaginary time slice l via s(i, l) = −s(i, l).

3. Updating the Greens Function

If the move was accepted, the Green’s functions, which depend on s (see Eq. 5 and
remember vσ(l) are functions of s) will now be different. You could recompute Gσ from
Eq. 5, using the new s. This will take a time which goes as N 3, since it involves a matrix
inversion. There’s a faster (order N 2) trick to get the new Gσ, which takes advantage of the
fact that only one element in one of the vσ(l) has changed. Compute the vectors,

cj↑ = −( e−2λ s(i,l) − 1 ) [G↑]ij + δji ( e
−2λ s(i,l) − 1 )

cj↓ = −( e+2λ s(i,l) − 1 ) [G↓]ij + δji ( e
+2λ s(i,l) − 1 )

bk↑ = [G↑]ki / ( 1 + ci↑ )

bk↓ = [G↓]ki / ( 1 + ci↓ ) (43)

Here δij is the usual Kronecker δ. Remember that i is the fixed site whose Hubbard-
Stratonovich field is being updated. The free indices j, k run from 1 to N . Then the new
Gσ are given by

[Gσ]jk = [Gσ]jk − bjσ ckσ. (44)
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Don’t forget to update your interaction energy matrix if you accept the move (Eq. 4).
After the new Gσ are computed, go to Hubbard-Statonovich field on the second spatial site
on imaginary time slice l = L and suggest a change to it, and follow the procedure of Eqs. 6-8
again, with i = 2. Continue this until all spatial sites of time slice l = L are updated.

4. Wrapping the Greens Function

After all spatial sites i of imaginary time slice l = L have been updated, change the
Green’s functions via,

Gσ = [ ek evσ(l) ] Gσ [ ek evσ(l) ]−1 (45)

Now update all the Hubbard-Stratonovich variables on imaginary time slice l = L − 1
following the procedures of Eqs. 6-8. When all spatial sites of imaginary time slice are
finished, wrap the Greens functions using Eq. 9 again.

Continue the process of Eqs. 6-9 until all imaginary time slices are updated.

5. Measurements

After completing an entire set of updates to all the space-time points of the lattice. make
measurements. For example, the density of electrons of spin σ on site i is given by,

〈niσ〉 = 1− [Gσ]ii. (46)

The double occupancy rate on site i is

〈ni↑ni↓〉 = ( 1− [G↑]ii ) ( 1− [G↓]ii ) (47)

The local moment on site i is,

〈(ni↑ − ni↓)
2〉 = 〈ni↑ + ni↓〉 − 2〈ni↑ni↓〉. (48)

The correlation between moments on sites i and j, for i 6= j, is given by,

S+i = c†i↑ci↓

S−j = c†j↓cj↑

〈S+iS−j〉 = −[G↑]ji [G↓]ij (49)

You can also measure pairing correlations, charge density wave correlations, etc.

6. Full Monte Carlo

Begin by initializing the Hubbard-Stratonovich field and computing the Kinetic and In-
teraction matrices (Eqs. 3,4), and finally the Green’s function (Eq. 5). Do a few hundred
‘equilibration’ sweeps of the lattice (Eqs. 6-9) without making any measurements. Follow
this by a few thousand ‘measurement’ sweeps in which you perform the operations of Eqs. 6-
9 and also Eqs. 10-12. Normalize your measurements to the number of measurement sweeps
performed.

35



7. Congratulations, you’re done!

We conclude this section by mentioning that there are a number of alternate Quantum
Monte Carlo approaches to the Hubbard Hamiltonian closely related to that discussed here.
These include a ground state projection method34,35, and approximate techniques which deal
with the sign problem66. Dynamical mean field theory67–69, especially when it employs the
Hirsch-Fye QMC method70 as its impurity solver, is a method of particular appeal since it
not only provides a solution to tight-binding models (with the limit where the mometum
dependence of the self-energy is neglected) but also offers a powerful methodology with
which to put together electronic stucture and many body physics.

B. Results: Local Moment, Spin Correlation, and Specific Heat

The evolution of the local moment (Eq. 12) at half-filling as the temperature is decreased
is shown in Fig. 1 on a 6x6 lattice for different interaction strengths U . We see the local
moment begin to develop from its uncorrelated value 1

2
at a temperature set by U , and

then saturate at low T . The local moment does not reach 1 at T = 0 because significant
quantum fluctuations allow doubly occupied and empty sites to occur even in the ground
state. However, as U increases, these fluctuations are suppressed and the moment becomes
better and better formed. The local moment also makes a further small adjustment at low
T , which is due to the onset of long range magnetic order.
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FIG. 16: The local moment 〈m2z〉 as a function of temperature for different interaction strengths
U and lattice size 6x6. The lattice is half-filled.

From the energy we can get the specific heat (Fig. 2). It shows an interesting two peak
strudture. The high temperature peak is associated with the formation of local moments,
and the low temperature peak with their ordering. The Hubbard model maps onto the
Heisenberg model at large U . This connection is emphasized in Fig. 2 which shows that the
low temperature peak in the specific heat of the Hubbard model can be mapped onto that
of the Heisenberg model with J = 4t2/U .
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FIG. 17: The specific heat of the Hubbard model for U = 10t. There is a high temperature peak
which is fit well by considering a single site Hubbard model (t = 0) and a low temperature peak
which agrees well with the Heisenberg model with J = 4t2/U = 0.4.

The near-neighbor spin correlation are shown in Fig. 3. The magnetic structure factor
S(π, π) = 1

N

∑

ij〈Sz,iSz,j〉 sums these correlations over the whole lattice. It is found that

S(π, π) grows linearly with N at low T , indicating that the correlations extend over the
whole lattice.
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FIG. 18: The near neighbor spin correlations and magnetic structure factor of the half-filled Hub-
bard model at U = 2t.

Finally, in Fig. 4 we show the density of states at ω = 0 for the half-filled Hubbard model
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at different values of U . The suppression of N(ω = 0) at low T and large U is a signature
of the presence of an insulating gap caused by the on-site repulsion.
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FIG. 19: The density of states at N(ω = 0). As T is lowered, a Mott-Hubbard gap opens up. The
half-filled Hubbard model is insulating.
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V. DQMC FOR THE ANDERSON-HUBBARD HAMILTONIAN

In the first three parts of this section we will present the results of Determinant Quantum
Monte Carlo simulations of the Anderson-Hubbard Hamiltonian, that is, studies of the
interplay of disordered one-body potential, two-body interactions, and a Zeeman field on
magnetism, thermodynamics, and metal-insulator transitions. The final topic concerns the
effect of interactions on the band insulating phase which arises from a periodic potential, as
opposed to a random one. Journal references are given at the beginning of each subsection.

A. Interaction driven Anderson Insulator to Metal Transition

Journal Reference: “Conducting phase in the two-dimensional disordered Hubbard model”,
P.J.H. Denteneer, R.T. Scalettar, and N. Trivedi, Phys. Rev. Lett. 83, 4610 (1999).

1. Introduction

As discussed in Section I, the central question motivated by experiments on silicon metal-
oxide semiconductor field effect transistors is whether electron-electron interactions enhance
the conductivity of a 2D disordered electron system, and possibly lead to a conducting phase
and a metal–insulator transition. We can address this question by studying the disordered
Hubbard model, which contains both relevant ingredients: interactions and disorder. While
the Hubbard model does not include the long range nature of the Coulomb repulsion, study-
ing the simpler model of screened interactions is an important first step in answering the
central qualitative question posed above. We use the Determinant Quantum Monte Carlo
simulation techniques introduced in Section IV, which enable us to avoid the limitations of
perturbative approaches (while of course being confronted with others). We mention that
recent studies using very different techniques from ours have indicated that interactions may
enhance conductivity: two interacting particles instead of one in a random potential has a
delocalizing effect31, and weak Coulomb interactions were found to increase the conductance
of spinless electrons in (small) strongly disordered systems32.

The quantity of immediate interest when studying a possible metal–insulator transition
is the conductivity and especially its T -dependence. By the fluctuation–dissipation theo-
rem σdc is related to the zero-frequency limit of the current-current correlation function.
A complication of the QMC simulations is that the correlation functions are obtained as
a function of imaginary time. To avoid a numerical analytic continuation procedure to
obtain frequency-dependent quantities, which would require Monte Carlo data of higher ac-
curacy than produced in the present study, we employ an approximation that was used and
tested before in studies of the superconductor–insulator transition in the attractive Hubbard
model44. This approximation is valid when the temperature is smaller than an appropriate
energy scale in the problem. Additional checks and applicability to the present problem are
discussed below. The approximation allows σdc to be computed directly from the wavevector
q- and imaginary time τ -dependent current-current correlation function Λxx(q, τ):

σdc =
β2

π
Λxx(q = 0, τ = β/2) . (50)

Here β = 1/T , Λxx(q, τ) = 〈jx(q, τ) jx(−q, 0)〉, and jx(q, τ) the q, τ -dependent current in

the x-direction, is the Fourier transform of jx(`) = i
∑

σ t`+x̂,`(c
†
`+x̂,σc`σ − c†`σc`+x̂,σ) . (See

also Ref.71).
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FIG. 20: Conductivity σdc as a function of temperature T for various values of disorder strength
∆ at U = 4 for (a) half-filling (〈n〉 = 1) and (b) 〈n〉 = 0.5. Calculations are performed on an 8× 8
square lattice; data points are averages over 4 realizations for a given disorder strength.

2. Results/Discussion

As a test for our conductivity formula (Eq. 59) we first present results in Fig. 23(a)
for σdc(T ) at half-filling for U = 4 and various disorder strengths ∆. The behavior of the
conductivity shows that as the temperature is lowered below a characteristic gap energy, the
high T “metallic” behavior crosses over to the expected low T Mott insulating behavior for
all ∆, thereby providing a reassuring check of the formula and of our numerics.

In Fig. 23(b), we show σdc(T ) for a range of disorder strengths at density 〈n〉 = 0.5 and
U = 4. The figure displays a change from metallic behavior at low disorder to insulating
behavior above a critical disorder strength, ∆c ' 2.7. If this persists to T = 0 and in the
thermodynamic limit, it would describe a ground state metal–insulator transition driven by
disorder.

In order to obtain a more precise understanding of the role of interactions on the conduc-
tivity, we compare in Fig. 24 the results of Fig. 23(b) with the disordered non-interacting
σ0
72. The comparison is made at strong enough disorder ∆ = 2.0 such that the localization

length is less than the lattice size and the non-interacting system is therefore insulating with
dσ0/dT > 0 at low T . Interactions are found to have a profound effect on the conductivity:
in the high-temperature “metallic” region, interactions slightly reduce σ compared to the
non-interacting σ0 behavior. On the other hand in the low-temperature “insulating” region
of σ0 the data shows that upon turning on the Hubbard interaction the behavior is com-
pletely changed with dσ/dT < 0, characteristic of metallic behavior. This is the regime of
interest for the MIT.

In order to ascertain that the phase produced by repulsive interactions at low T is not an
insulating phase with a localization length larger than the system size but a true metallic
phase we have studied the conductivity response for varying lattice sizes. We find a markedly
different size dependence for the U = 0 insulator and the U = 4 metal, resulting in a
confirmation of the picture given above. For U = 0, the conductivity on a larger (12 × 12)
system is lower than that on a smaller (8×8) system (see Fig. 24), consistent with insulating
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FIG. 21: Conductivity σdc as a function of temperature T comparing U = 4 and U = 0 at 〈n〉 = 0.5
and disorder strength ∆ = 2.0. Data points are averages over many realizations for this disorder
strength (see text). Error bars are determined by the disorder averaging and not the Monte Carlo
simulation.

behavior in the thermodynamic limit, whereas for U = 4 the conductivity on the larger
(8×8) system is higher than that on the smaller (4×4) system (data not shown), indicative
of metallic behavior. Thus the enhancement of the conductivity by repulsive interactions
becomes more pronounced with increased lattice size73.

Concerning finite-size effects for the non-interacting system we note that at lower values
of ∆, where the localization length exceeds the lattice size, σ0 shows “metallic” behavior
which is diminished upon turning on the interactions74. Based on our analysis above, we
would predict that at low enough T and large enough lattice size, the conductivity curves
for the non-interacting σ0 and interacting σ cross with σ > σ0 at sufficiently low T .

To obtain information on the spin dynamics of the electrons and because it is a quantity
often discussed in connection with the localization transition, we also compute the spin
susceptibility χ as a function of T (through χ(T ) = βS0(T ) where S0 is the magnetic
structure factor at wavevector q = 0). Fig. 25 shows two things: 1) χ(T ) is enhanced by
interactions with respect to the non-interacting case (at fixed disorder strength), and 2)
starts to diverge when T is lowered, both on the metallic (∆ = 2) and insulating (∆ = 4)
sides of the alleged transition. This is in agreement with experimental and theoretical work
on phosphorus-doped silicon, where a (3D) MIT is known to occur and the behavior is
explained by the existence of local moments75, and also with diagrammatic work on 2D
disordered, interacting systems14.

To establish definitively the existence of a possible quantum phase transition in the disor-
dered Hubbard model requires: (i) Extending the present data at T = 0.1 = W/80, whereW
is the non-interacting bandwidth, to lower T , which is however difficult because of the sign
problem. (ii) A more detailed analysis of the scaling behavior in both linear dimension and
some scaled temperature. (iii) A more accurate analytic continuation procedure to extract
the conductivity. The condition for the validity of the approximate formula (Eq. XX) for
σdc(T ), requires that T be less than an appropriate energy scale which is fulfilled within the
two phases, but breaks down close to a quantum phase transition where the energy scale
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FIG. 22: Spin susceptibility χ as a function of temperature T at 〈n〉 = 0.5 comparing interaction
strengths U = 0, 2, 4 and disorder strengths ∆ = 2, 4. Calculations are performed on 8× 8 square
lattices; error bars are from disorder averages over up to 8 realizations.

vanishes.
Given the well-known difficulty of DQMC simulations resolving the issue of d-wave super-

conductivity in the clean Hubbard model because of the sign problem mentioned in (i) above,
it is worth discussing briefly why more definitive results are obtainable in this study of the
MIT. The most important reason concerns the higher temperature scale of the phenomenon:
interactions enhance the conductivity and lead to metallic behavior in a temperature range
(about 1/10 of the Fermi energy) here, similar to that of experiments. In the cuprates, al-
though the transition temperatures are very high by the standards of othe superconductors,
they are of the order of 1/100 of the Fermi energy, a factor of ten lower. Furthermore, the
region of highest transition temperature is, very unfortunately, at a doping ρ ≈ 1− 1

8
where

the sign problem in the simulations is worst.

3. Conclusion/Summary

In summary, we have studied the temperature-dependent conductivity σ(T ) and spin
susceptibility χ(T ) of a model for two-dimensional electrons containing both disorder and
interactions. We find that the Hubbard repulsion can enhance the conductivity and lead to
a clear change in sign of dσ/dT . More significantly, from a finite size scaling analysis we
demonstrate that repulsive interactions can drive the system from one phase to a different
phase. We find that σ(T ) has the opposite behavior as a function of system size in the two
phases indicating that the transition is from a localized insulating to an extended metallic
phase. The χ(T ) data further suggests the formation of an unusual metal, a non-Fermi liquid
with local moments. While the simplicity of the model we study prevents any quantitative
connection to recent experiments on Si-MOSFETs, there is nevertheless an interesting qual-
itative similarity between Fig. 23(b) and the experiments. Varying the disorder strength ∆
at fixed carrier density 〈n〉, as in our calculations, can be thought of as equivalent to varying
carrier density at fixed disorder strength, as in experiments, since in a metal–insulator tran-
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sition one expects no qualitative difference between tuning the mobility edge through the
Fermi energy (by varying ∆) and vice-versa (by varying 〈n〉). Our work then suggests that
electron-electron interaction induced conductivity plays a key role in the 2D metal–insulator
transition.

B. Zeeman Field

Journal Reference: “Interacting electrons in a two-dimensional disordered environment: Ef-
fect of a Zeeman magnetic field”, P.J.H. Denteneer and R.T. Scalettar, Phys. Rev. Lett. 90,
246401 (2003).

1. Introduction

A hundred years after the Nobel prize was awarded in 1902 for the discovery of the Zee-
man effect and the subsequent explanation by Lorentz, applying a magnetic field continues
to be a powerful means to elucidate puzzling phenomena in nature. One of the most recent
examples is to the topic of these notes: the interplay of interactions and disorder in electronic
systems and the pioneering experiments on the metal–insulator transition (MIT) in effec-
tively two–dimensional low-density silicon metal-oxide-semiconductor field-effect transistors
(MOSFETs) discussed earlier16–18.

Contrary to the well-known effect of a magnetic field in weak-localization theory to
disturb interference phenomena and hence undo localization and insulating behavior, the
negative magnetoresistance effect2, in the Si MOSFETs and similar heterostructures, the
magnetic field is found to suppress the metallic behavior and therefore promote insulating
behavior20,76,77. The effect is present for all orientations of the magnetic field relative to the
2D plane of the electrons. In particular, a Zeeman magnetic field, applied parallel to the 2D
plane of electrons and therefore coupling only to the spin, and not the orbital motion of the
electrons, has been used extensively. This puts into focus the important role played by the
spin degree of freedom of the electron, and its polarization78–81.

In this section, we continue our DQMC study of the Anderson-Hubbard Hamiltonian,
but now include the effect of a Zeeman magnetic field, that is, an additional term in H of
the form,

+B‖
∑

jσ

σnjσ (51)

While the numerical evidence is mixed concerning the occurrence of a MIT due to
interactions,82–85 there is a consensus in favor of a Zeeman magnetic field tuned
transition84–87, as we shall describe in more detail below.

Our main focus continues to be on the conductivity, although now we explore its B‖–
dependence as well as its T–dependence. Another interesting quantity to study in conjunc-
tion with the magnetoconductivity is the degree of spin-polarization P of the electronic
system:

P =
n↓ − n↑
n↓ + n↑

, (52)

where n↓, n↑ are the average spin-densities of the corresponding number operators.
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FIG. 23: Conductivity σdc (in units of e2/~) as a function of temperature T for various strengths
of Zeeman magnetic field B‖. As B‖ increases, a transition from metallic to insulating behavior
is seen in σdc. Calculations are performed on 8 × 8 lattices for U/t = 4 at density 〈n〉 = 0.5 with
disorder strength ∆t = 2.0 (see text); error bars result from averaging over typically 16 quenched
disorder realizations. B‖ and ∆t are given in units of t.

2. Results/Discussion

In order to study the effect of the Zeeman magnetic field B‖ on the metallic behavior,
we start from the case with density 〈n〉 = 0.5 and disorder strength ∆t = 2.0 for which the
model exhibits clear metallic behavior: σdc rising when lowering temperature T 88. Fig. 26
shows that turning on B‖ reduces the conductivity and suppresses the metallic behavior; at
field strength B‖ = 0.4, σdc appears T -independent (within the error bars), and at larger
field strengths shows a tendency to decrease upon lowering T . We do not expect σdc to go to
zero, as for a real insulator, unless very low T and very large lattices (out of reach of our com-
putational approach) are employed. Nevertheless, Fig. 26 shows the qualitative features of a
magnetic-field-driven metal–insulator transition, similar to what is seen in experiment20,76,77.
Previous numerical approaches using different techniques have also produced this effect84–86.

Since the effect of B‖ is to polarize the electronic system (with our sign choice in Eq. 60),
n↓ is promoted at the expense of n↑), a large enough B‖ will result in electrons with spin down
only and, because of the nature of the Hubbard interaction, in a non-interacting system89.
Therefore, in the limit of large 2D lattices and low temperature, the hopping disorder will
force the conductivity to vanish. Our nonzero value of σdc at very large B‖ is then a direct
measure of the systematic errors due to finite size and non-zero T . In Fig. 27, we subtract
out this value, focus more on fields close to B‖ = 0.4, and show the resulting δσdc vs. B‖
for our lowest temperatures. A rather abrupt onset appears of δσdc below B‖ ≈ 0.5, which
is about the field value where the curves of σdc vs. T change from insulating to metallic
(Fig. 1). Our data for a 2D system in Fig. 27 are consistent with a linear vanishing of
δσdc as the (quantum) critical point is approached. At present, our results, while presenting
compelling evidence for the transition itself, are clearly not precise enough to obtain critical
exponents. Interestingly, a transition from insulator to metal upon increasing magnetic field,
i.e. the known negative magnetoresistance effect, occurs in an amorphous three-dimensional
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FIG. 24: Conductivity difference δσdc ≡ σdc(B‖, T )− σdc(B‖ = 4, T ), with conductivity at very
high B-field subtracted, as a function of B‖ for low temperature T . A sharp onset of conductivity
is seen at a Zeeman field at which the slope of σdc(T ) changes sign in Fig. 1. Computational
details and units are as in Fig. 1; for clarity, only error bars on T = t/6-data are shown; those on
T = t/8-data are typically sligthly larger (cf. Fig. 1).

Gd-Si alloy (showing a MIT at zero field), also with a linear vanishing of the conductivity90.
While it is possible that these observations are unrelated, it is also conceivable that this is
an indication of a, yet hidden, connection between the two transitions.

In Fig. 28, we show the resistivity ρ (≡ 1/σdc) as a function of B‖ for low T . The crossing
point (between B‖ = 0.3 and 0.4) demarks a critical field strength Bc which separates fields
for which the resistivity decreases when lowering temperature (low-field metallic behavior)
from fields for which ρ increases upon lowering T (high-field insulating behavior). It is
especially noteworthy that the critical field strength (which can be roughly estimated to
lie between 0.3 and 0.5 from Figs. 27 and 28) is clearly lower than the field for which full
spin-polarization sets in. Indeed, in Fig. 29, we show how the spin polarization P , defined
in (52), behaves as a function of B‖ at the lowest temperature used: there is no reflection
of the critical field strength in the behavior of the polarization and full spin-polarization
only happens for B‖ > 1.2. This feature of our data is in excellent agreement with recent
experiments performed on 2D electron- and hole-gases in GaAs and AlAs80,81. Since complete
spin-polarization is equivalent to a non-interacting system, the separation of the two field
strengths and the incomplete polarization at the MIT present evidence that the Zeeman
field tuned MIT must be seen as a property of a fully interacting many-body system, at
least in the 2D disordered Hubbard model.

Another interesting feature of Fig. 28 is what appears to be the saturation of resistivity
at a field not much higher than Bc. Experiments also show this behavior, but only for AlAs,
where the saturation is shown to coincide with full spin polarization80. We argue that the
on-site nature of the interactions in the Hubbard model make the saturation happen at much
reduced field strength compared to that of complete polarization: at our rather low total
density the minority spin species will effectively be decoupled from the majority spin species
and both spin species form non-interacting subsystems at a field where the minority spin
has not disappeared completely. Increasing magnetic field further at constant total density
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FIG. 25: Resistivity ρ as a function of B‖ for various low T . The crossing point provides another
estimate for the critical field strength. Computational details and units are as in Figs. 26 and 27;
for clarity the error bars have been omitted, but can be estimated from Figs. 26 and 27.

will then not change the conducting properties anymore.
The notion of a predictable and straightforward effect of B‖ is also concordant with

the phenomenon that ρ(B‖) behaves qualitatively the same in the metallic and insulating
phases3, and therefore the same physical mechanism seems at play in both cases. Our results
suggest as a likely candidate for this mechanism: the reduction of the effective interaction
by spin polarization.

3. Conclusion/Summary

In summary, applying a Zeeman magnetic field in the 2D disordered Hubbard model
reduces the effect of the Hubbard interaction and is able to bring about a transition from
a metallic phase to an insulator at a critical field strength. We find this critical field is
considerably less than the field required for full spin polarization, emphasizing that, for
the disordered Hubbard model, the metal-insulator transition occurs in a region where a
considerable degree of electronic correlation remains. This is in good qualitative agreement
with experimental observations when a magnetic field is applied parallel to a 2D electron
or hole gas in GaAs– and AlAs–based heterostructures80,81. For Si MOSFETs, the general
phenomenon of suppression of the metallic behavior is in agreement, but the issue of the
critical field being smaller than a saturating field is less clear79. In earlier work, we studied
the T -dependence of σdc for various ∆t without a B-field and showed that the Hubbard
interaction enhances σdc and leads at low T to metallic behavior that can be made insulating
by sufficiently strong disorder. Our present results concerning the effect of a magnetic field
are consistent with that conclusion and therefore strengthen it: the rather strong interactions
that caused the conducting phase at disorder strength ∆t = 2.0 (below the critical disorder
strength of approximately 2.4 above which the system is insulating) without B-field are
reduced by a B-field which is able to drive the system back to its insulating phase. The
latter is also its natural state in the absence of interactions. We believe that this consistency
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FIG. 26: Degree of spin polarization P (defined in (52) in text) as a function of B‖ for fixed low
T = t/8. The polarization shows little change through the metal-insulator transition and is close
to 0.4 only at the critical field strength.

indicates that the disordered Hubbard model provides a coherent, qualitative picture of the
phenomena in 2D electronic, disordered systems both in the presence and absence of a
Zeeman magnetic field.

C. The Role of Particle-Hole Symmetry

Journal Reference: “Particle–Hole Symmetry and the “Effect of Disorder on the Mott–
Hubbard Insulator”, P.J.H. Denteneer, R.T. Scalettar, and N. Trivedi, Phys. Rev. Lett. 87,
146401 (2003).

1. Introduction

In recent years, it has become increasingly clear that for non-interacting electrons the
presence or absence of certain symmetries is crucial in determining the effect of disorder
on both transport and thermodynamic properties, as well as critical properties of the lo-
calization transition.91 Recent examples where symmetry considerations are important are
given in the context of quantum wires92 and disordered superconductors,93,94 where chiral,
time–reversal, and spin–rotation symmetries play an important role.

In the preceding sections, we studied bond-disordered Hamiltonians which retain the
particle-hole symmetry of the clean Hubbard model. In this section, we examine the effect of
different types of disorder, including those which break this symmetry, on both the dynamic
and equilibrium thermodynamics in the vicinity of half-filling, electron density 〈n〉 = 1. Our
results suggest that the presence or absence of particle–hole symmetry determines the effect
of randomness on the conductivity and the Mott gap.

In order to make the distinction between the different types of disorder clear, we write
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FIG. 27: The effect of particle–hole–symmetry preserving (near-neighbor) bond disorder in the
half-filled Hubbard Hamiltonian is to decrease the conductivity σdc. Data is for U = 4t on a 8× 8
square lattice; ∆t measures the strength of the bond disorder.

down again the 2d Anderson-Hubbard Hamiltonian we consider,

H = −
∑

〈ij〉,σ
tijc

†
iσcjσ −

∑

〈〈ik〉〉,σ
t′ikc

†
iσckσ

+ U
∑

j

(nj↑ −
1

2
)(nj↓ −

1

2
)−

∑

j,σ

µj njσ . (53)

Here tij is a bond–dependent hopping matrix element on near-neighbor sites 〈ij〉, t′ik is a
bond–dependent hopping matrix element on next-near-neighbor sites 〈〈ik〉〉, U is an on–
site repulsion, and µj is a site-dependent chemical potential. We choose P (tij) = 1/∆t for
tij ∈ [t−∆t/2, t+∆t/2], and zero otherwise, with t = 1 to set our scale of energy. Similarly,
P (t′ik) = 1/∆′

t for t
′
ik ∈ [t′ −∆′

t/2, t
′ +∆′

t/2], and P (µj) = 1/∆µ for µj ∈ [−∆µ/2,+∆µ/2],
so that the various ∆ measure the disorder strength. We will focus on half–filling where the
effects of interactions are most prominent, as evidenced by the formation of antiferromagnetic
correlations and a Mott-Hubbard charge gap at low temperatures.

This Hamiltonian, Eq. 62, is particle–hole (ph) symmetric when t′ik = µj = 0. That is,

under the transformation c†iσ → (−1)iciσ the Hamiltonian is unchanged, and the system is
precisely half–filled for all values of the parameters in H and also for all T . Therefore, while
near-neighbor bond and local site disorder both introduce randomness into the system, they
differ fundamentally in that site disorder breaks ph–symmetry.

In addition to the conductivity and spin polarization of the preceding sections, we also
extract the temperature-dependent density of states at the chemical potential N(ε = 0)95

from the one-electron Green function as a function of imaginary time,

N(0) ' −β G (r = 0, τ = β/2) /π . (54)

This quantity allows a more clear characterization of the transport and thermodynamic
properties of the system. For σdc and N(0), “Trotter” errors associated with the discretiza-
tion of imaginary time β are considerably less than the fluctuations associated with monte
carlo and disorder averaging.
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FIG. 28: Canonical site disorder (with strength ∆µ) enhances the conductivity. Particle–hole sym-
metric site disorder (with strength ∆′

µ), as with bond disorder (Fig. 1), suppresses the conductivity.
Other parameters are as in Fig. 1.

2. Results

First we discuss the transport properties: in Fig. 31, which includes some dtat previously
shown in Fig. 24, we exhibit the effect of near-neighbor hopping (bond) disorder on the
conductivity. For all disorder strengths ∆t, at temperatures greater than a characteristic
temperature T∗ related to the Mott gap, the system shows metallic behavior with σdc in-
creasing upon lowering T . The conductivity turns down sharply as the temperature drops
below T∗ and the system shows insulating behavior with σdc decreasing upon lowering T . In
the case of zero randomness, the perfect nesting of the Fermi surface in 2d leads to antifer-
romagnetic long range order (AFLRO) in the ground state with an associated spin density
wave gap for arbitrarily small U evolving to a Mott gap at larger U . Hopping disorder re-
duces AFLRO via the formation of singlets on bonds with large hopping tij and hence large
coupling J = t2ij/U and ultimately destroys it beyond ∆t ≈ 1.6t.96 The fascinating result
we have found is that insulating behavior in the conductivity nevertheless persists to much
larger ∆t. Moreover from the shift of the maximum in Fig. 31 we deduce that the mobility
gap in fact increases with increasing ∆t.

The situation is quite different in the case of site disorder, as shown in Fig. 32: at fixed
temperature T , as site disorder ∆µ is turned on, the conductivity increases, i.e. the Mott
insulating state is weakened.97 At weak disorder, the conductivity drops with decreasing T ,
reflecting again the presence of the Mott insulating phase. As the disorder strength becomes
large enough to neglect U , one would expect a similar temperature dependence arising from
Anderson insulating behavior. We believe that in all cases the conductivity will ultimately
turn over and go to zero at low T , but we are limited in these simulations to temperatures
T > W/48 because of the fermion sign problem. Nevertheless, the data for site disorder
offer a dramatic contrast to that of bond disorder (Fig. 31) where randomness decreases the
conductivity.

What is the underlying reason for the different effects of bond and site disorder on the
conductivity? There are several obvious differences in the effect of bond and site disorder
on local and even longer range spin and charge correlations. Site disorder enhances the
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FIG. 29: The Mott gap is made more robust by the addition of bond disorder or particle-hole
symmetric site disorder (open and filled squares) of strength ∆ = 2t = U/2, as indicated by the
response of the density to changes in the chemical potential. For canonical site disorder (filled
circle) the Mott gap is practically unaffected by this strength of randomness. [19] Calculations are
for T = t/8 =W/64 on a 8× 8 lattice.

amount of double occupancy on the lattice, since the energy cost U of double occupancy is
compensated by differences in site energies. One explanation of why site disorder increases
σdc is that the concomitant increase in empty sites leads to more mobility. This destruction
of local moments ultimately also leads to the end of antiferromagnetic order. Surprisingly,
we find in our simulations that bond disorder has a similar diminishing effect on local
moments, suggesting that the difference in the behavior of the conductivity arises from a
different origin.

We argue here that particle–hole symmetry is the unifying criterion which underlies and
determines the effect of disorder. As emphasized above, site and bond disorder have rather
similar effects on the double occupancy. Moreover, the consequences of this effect for σdc
are expected to become visible only above a threshold value of disorder strength, whereas
we observe effects on σdc already for weak disorder. Instead, the key distinction is in the
presence or absence of ph–symmetry. In order to explore this conjecture more fully, we have
studied two other types of disorder: site disorder that preserves ph–symmetry and bond
disorder that breaks ph–symmetry (by including next-near-neighbor hopping).

Particle–hole symmetric site disorder is introduced by adding random chemical potentials
to the Hubbard model which couple with opposite sign to the density of up and down
electrons, i.e. choose µj ≡ µjσ = σµj in Eq. 62. This type of disorder represents a random
(Zeeman) magnetic field. For U = 0 ph–symmetric site disorder has precisely the same effect
as conventional site disorder, since moving in a given random chemical potential landscape or
one obtained by reversing all the site energies is entirely equivalent. However the behavior of
the conductivity at finite U is dramatically different. Fig. 32 shows that ph–symmetric site
disorder (with strength ∆′

µ) has the same effect on σdc as bond disorder, i.e. conductivity
decreases with increasing ∆′

µ.
To seek final confirmation of our conjecture, we have also explored the effect of next-near-

neighbor (nnn) hopping and randomness therein. Such longer ranging hybridization breaks
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FIG. 30: Behavior of the density of states πN(0) at the Fermi level and at fixed low temperature
as a function of disorder strength ∆/t for various types of disorder. All data are for T = t/6,
except data for randomness in next-near-neighbor hopping (disorder strength ∆′

t) which are at
temperature T = t/5 (the value t′ = 0 is used). [19] Other parameters are as in Figs. 1 and 2.

ph–symmetry on a square lattice, since it connects sites on the same sublattice. We find
that such disorder has the same effect as conventional site randomness, i.e. increases the
conductivity at finite T . Thus in all four types of disorder, the behavior of the conductivity
falls into the appropriate class based on the preservation or destruction of ph–symmetry,
strengthening the evidence that it is this symmetry which is playing the crucial role in
determining the effect of randomness on the transport properties.

We now turn to thermodynamic properties. The most direct measure of the Mott gap
is from the compressibility, or from the behavior of density 〈n〉 as a function of chemical
potential µ, as shown in Fig. 33. The range of µ where 〈n〉 is constant (and the system is
incompressible) is a direct measure of the gap in the spectrum. Hopping and ph-symmetric
site disorder clearly stabilize the plateau of the density at half–filling. On the other hand,
conventional site disorder (with ∆µ = U/2) has a compressibility which is indistinguishable
(within the computational possibilities) from the clean system.

The density of states (DOS) at the Fermi level N(0) gives valuable information on the
effect of disorder on the Mott gap. In the pure system, QMC studies have shown that the
DOS exhibits a clear Mott gap with N(0)→ 0 as T is lowered to zero. The nonzero values
of N(0) we obtain at nonzero T reflect the small residual slopes in the plateaus in the 〈n〉 vs.
µ plot (cf. Fig. 33); at lower T , N(0) approaches zero just as the plateaus become perfectly
flat. The behavior of N(0) at a fixed low T as a function of the strength of the various types
of disorder is given in Fig. 4. N(0) is rather insensitive to ph–symmetric disorder (∆t and
∆′

µ) and is even reduced by it: the Mott gap persists. On the other hand, ph–symmetry
breaking disorder (∆µ and ∆′

t) clearly enhances N(0), i.e. fills up the Mott gap.
Our results provide a clear numerical demonstration of the key role of particle–hole sym-

metry. The effects can also be understood qualitatively as follows: In the clean case, at
〈n〉 = 1 and strong coupling, the DOS consists of an occupied lower Hubbard band (LHB)
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and an unoccupied upper Hubbard band (UHB), separated by a charge gap of the order of
U . In the case of ph–symmetric disorder, the effect of disorder on LHB and UHB is identical.
Therefore the Fermi energy remains in the middle of the gap: this enables the insulating be-
havior and Mott gap to stay intact. A stabilized charge gap for ph–symmetric site disorder
is evident since double occupation is strongly suppressed. For nn-hopping disorder a simple
argument is less obvious, but the data in Fig. 33 clearly show that these two cases fall into
the same class. When ph-symmetry is broken, the LHB and the UHB will be affected dif-
ferently; different numbers of states will appear at either side of the gap. As a consequence,
the Fermi energy ends up in one of the tails of the DOS, resulting in an enhanced N(0)
(cf. Fig. 34) and increased conductivity (Fig. 32). The fact that the states introduced by
disorder are localized98 will keep the system in an insulating state (cf. Fig. 32).

3. Conclusions

We have shown that particle–hole (ph) symmetry plays a decisive role in determining the
effect of randomness on transport and thermodynamic properties of the half-filled Hubbard
model. By exploring four different types of disorder, of which two preserve ph symmetry and
two break it, we demonstrate that a classification by this symmetry allows us to understand
the effect of disorder on σdc(T ), the charge gap and the compressibility. The presence of ph
symmetry is found to have a protective influence on the charge gap.

A related example where symmetry plays a crucial role in the effects of disorder is the
case of localization in the superconducting phase, where the quasiparticles are described by
a Bogoliubov–de Gennes Hamiltonian.94 In this case, one can classify the system according
to the presence or absence of time reversal and spin rotation symmetries, and it is found
in one dimension that in the absence of spin rotation symmetry, the conductance decays
algebraically with system size, while in the symmetric case it decays exponentially. There-
fore, in this situation as well, the extra spin rotation symmetry leads to a strengthening of
insulating behavior.

The question of the behavior of the half–filled fermion Hubbard model as disorder is added
is furthermore reminiscent of similar issues in the ph-symmetric boson Hubbard model.37

At generic densities, it is believed that a new ’Bose glass’ phase arises to intervene in the
original ground state phase diagram between superfluid and Mott insulating phases, but the
situation at the ph-symmetric tip of the Mott lobe is uniquely different. Our work is a first
step in the analysis of the nature of the behavior of the fermionic model.

D. Interaction driven Band Insulator to Metal Transition

Journal Reference: “Quantum Monte Carlo Study of an Interaction-Driven Band Insulator
to Metal Transition”, N. Paris, K. Bouadim, F. Hebert, G.G. Batrouni, and R.T. Scalettar,
cond-mat/0607707.

Introduction

Thus far in these notes we have emphasized the role of interaction effects in disordered,
tight-binding models such as the Hubbard Hamiltonian in driving a metallic transitions from
an Anderson insulating states originating in the random potential. Actually, a somewhat
more simple context in which to study the possibility of interaction driven insulator to metal
transitions is to begin with a band insulating state, in which the insulating behavior is caused
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by a periodic external potential as opposed to a random one57–60,65. Recently, this issue has
been addressed within dynamical mean field theory (DMFT) and a number of interesting
conclusions emerged99. However, because DMFT treats only a single site (retaining, however,
all the dynamical fluctuations of the self-energy ignored in conventional, static mean field
theory) it is important to undertake complementary work which is able to retain intersite
fluctuations.

In this section, we investigate such band insulator-metal transitions with DQMC. The
specific Hamiltonian we study is the “ionic Hubbard model”:

H = − t
∑

〈lj〉σ
(c†jσclσ + c†lσcjσ) + U

∑

l

nl↑nl↓

+
∑

l

(∆(−1)l − µ)(nl↑ + nl↓) . (55)

Instead of a random chemical potential, the term ∆(−1)l provides a staggered site energy.
In the noninteracting limit, U = 0, the effect of ∆ is to produces a dispersion relation,
E(k) = ±

√

ε(k)2 +∆2 with ε(k) = −2t[coskx + cosky], which is gapped at half-filling. (See
Ex. xx.) A considerable amount is know concerning this model in one dimension100, but
the existence of an interaction driven metallic phase at half-filling is still unresolved even in
d = 1. Metal-insulator transitions in a related system with randomly located site energies
with a bimodal distribution have also been studied within DMFT101,102.

1. Results

We begin by showing the temperature dependence of the conductivity σdc for increasing
values of the interaction strength for ∆ = 0.5. In Fig. 35 we see that the insulating behavior
at U = 0 signalled by dσdc/dT > 0 at low T is changed to metallic dσdc/dT < 0 at low T
when U = 1. A further increase of the correlations to U = 2 weakens the metallic behavior,
and which is finally destroys completely in a transition to a Mott insulator at U = 4. When
the band gap is larger (∆ = 1), the screening of the one-body potential is not sufficiently
strong for U = 1 to cause metallic behavior, as is shown by the corresponding data set in
Fig. 1. Here, and throughout this paper unless otherwise mentioned, the lattice size used in
the simulations is N = 6× 6 and the filling is ρ = 1.0 (half-filling).

In the single site (t = 0) limit, the ionic Hubbard model is a band insulator for U < 2∆
and a Mott insulator for U > 2∆. That is, at weak coupling and half-filling, the sites with
lower energy −∆ are doubly occupied and those with higher energy +∆ are empty, with a
gap to further addition of particle set by 2∆ − U . At strong coupling, both types of sites
are singly occupied, with a gap to further addition of particles set by U − 2∆. correlations
close the band gap At the single special value U = 2∆ correlations close the band gap65,99.
Fig. 36, which presents results for σdc for ∆ = 0.5, shows that when t is nonzero, this single
metallic point is expanded to a finite range of U values. Interestingly, however, the largest
conductivity remains at U = 2∆ = 1 as one might expect from the t = 0 analysis. The
band-insulator to metal transiton occurs at Uc1 ≈ 0.4t, where the change in the order of the
three curves indicates a transition from σdc decreasing as β increases to σdc increasing as β
increases. The metal transiton to Mott insulator transition is at Uc2 ≈ 2.5t, where σdc once
again decreases as β increases.

The use of DQMC to study the ionic Hubbard model allows us to examine the behavior
of intersite correlations, among them the spin-spin correlations and their Fourier tranform
S(k). Fig. 37 shows results for the antiferromagnetic structure factor S(π, π) as a function
of U for β = 10, 12, 16. Comparing with Fig. 36 we see that the band insulating and metallic

53



0 0.1 0.2 0.3 0.4 0.5
T

0

5

10

15

σ dc

U=0.0   ∆=0.5
U=1.0   ∆=0.5
U=2.0   ∆=0.5
U=4.0   ∆=0.5
U=1.0   ∆=1.0

FIG. 31: The transitions, at half-filling, from a band insulator to metal to Mott insulator with
increasing U are shown for periodic potential strength ∆ = 0.5. At U=0 the conductivity σdc
goes to zero as T is lowered. However, for at intermediate U = 1, 2 the system is metallic. Mott
insulating behavior sets in for U = 4. The lattice size is 6 × 6. When ∆ = 1.0, the band gap
increases and U = 1 is no longer sufficiently large to screen the one body potential and drive the
system metallic.
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FIG. 32: The conductivity σdc at half-filling for ∆ = 0.5 is shown as a function of U for three
different low temperatures, β = 10, 12, 16. The band-insulator to metal transition is signaled by
the crossing of the curves at Uc1 ≈ 0.4t. At Uc2 ≈ 2.5t the three curves cross again, indicating the
Mott insulator transition.

phases are paramagnetic, but that the transition to Mott insulating behavior is accompanied
by the onset of antiferromagnetic order.

One way in which the inclusion of such intersite correlations changes the physics in a
fundamental way is when the periodic potential is absent, that is, at ∆ = 0. In DMFT in
the paramagnetic phase, the Hubbard model is a metal at weak coupling67,103. However it is
known that the d = 2 square lattice Hubbard model being studied here is an antiferromag-
netic insulator at all U , even weak coupling. Fig. 38 presents results for the conductivity
which confirms this. At all U values shown, σdc ultimately decreases as T is lowered. Indeed,
we have verified that the value of T where σdc has its maximum correlates well with the tem-
perature T∗ at which antiferromagnetic correlations begin to rise rapidly. This temperature,
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FIG. 33: The antiferromagnetic structure factor is shown at half-filling as a function of U for two
different values of the periodic potential ∆ = 0.5 and inverse temperature β = 10, 12, 16.
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FIG. 34: The conductivity σdc is shown as a function of temperature at half-filling. When the
periodic potential, and hence the non-interacting band gap, is absent (∆ = 0.0) the square lattice
Hubbard model is insulating for all U , due to nesting of the Fermi surface. We re-display data for
δ = 0.5, U = 1 from Figure 1 to emphasize the contrast between the metallic behavior there and
the insulating behavior for all U when ∆ = 0.

like the Neél temperature in the d = 3 Hubbard model, is a non-monotonic function of U ,
falling to small values both at weak (T∗ ∝ t exp(a

√

t/U) and at strong (T∗ ∝ t2/U) coupling.
To our knowledge, this is the first time the insulating nature of the square lattice Hubbard
model at weak coupling has been shown from Quamtum Monte Carlo studies of σdc. It is
interesting to note that while all the ∆ = 0 curves share a common low temperature slope
dσdc/dT > 0, a distinction between the antiferromagnetic and Mott origins of insulating
behavior is clearly evident. At small U , σdc attains a much larger value before turning over
as T is lowered than in the strong coupling Mott regime.

While DQMC allows us to look at intersite correlations and the associated phenomena
like antiferromagnetism and insulating behavior deriving therefrom, the method employs
lattices of finite size, unlike DMFT which directly probes the thermodynamic limit. Thus,
it is important to verify that the metallic phase we observe persists to larger lattices. In
Fig. 39 we show results for σdc as a function of temperature in the metallic phase for lattices
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FIG. 35: The conductivity at half-filling is shown for different lattice sizes for U = 1, close to the
point where the system is most metallic for periodic potential ∆ = 0.5. (See. Fig. 2.) Although
σdc decreases with increasing lattice sizes, the signature of metallic behavior (dσdc/dT < 0) is
unchanged.
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FIG. 36: The conductivity at ρ = 1.0 is shown as a function of U for ∆ = 1.0 and β = 10, 12, 16.
The system is a band insulator up to U ≈ 1.5 whereupon metallic behavior onsets.

up to 12× 12. The rise in σdc with decreasing T is seen to occur for all the lattices studied.
We comment that it is not surprising that we find the lattice size has a rather substantial
influence on the conductivity for these parameter, since is known that such finite size effects
are larger at weak coupling.

Fig. 40 shows the conductivity as a function of U for three different temperatures at
∆ = 1.0. There is now a much larger band-insulating phase at weak coupling, with a critical
U for the metallic transition at Uc ≈ 1.5. It is interesting that the conductivity again appears
to peak at the value U = 2∆ where the t = 0 analysis suggests might be most amenable to
the formation of a metal. Unfortunately, as U is increased into the metallic phase, the data
become extremely noisy. This is a consequence of the sign problem.

Fig. 41 shows the average sign as a function of U for ∆ = 1. We see that it is not possible
to do DQMC simulations at low T beyond U = 2 or so.

The evidence for metallic behavior at ∆ = 1.0 in Fig. 40 is a bit lost in the noise. In Fig. 42
we show the conductivity focussing on U values just inside the metallic rgion where the sign
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FIG. 37: The average sign in the DQMC simulations as a function of U . 〈S〉 rapidly becomes small
as the metallic region is entered. It rises again in the Mott insulator.

0 0.1 0.2 0.3 0.4 0.5
T

0

2

4

6

8

10

σ dc

U=1.750
U=1.875
U=2.000

N=6x6  ρ=1.0   ∆=1.0

FIG. 38: The conductivity as a function of T for U = 1.750, 1.875, and 2.000. The system is clearly
metallic.

problem is not yet so bad. The steady increase of σdc as T decreases shows convincingly
that the system is a metal at these U values.

Conclusions

In this section, we have presented determinant Quantum Monte Carlo studies of the two-
dimensional Hubbard Hamiltonian which demonstrate that interactions can drive a band
insulator metallic. This work complements DMFT studies by including intersite antiferro-
magnetic correlations which qualitatively alter the ground state phase diagram.

We have focused most of our results on ∆ = 0.5. It would be interesting to attempt to
construct the full phase diagram in the ∆/t−U/t plane for the d = 2 ionic Hubbard model,
and compare with that obtained in DMFT99. As we have emphasized, the behavior along
the ∆ = 0 axis is significantly different. At intermediate values of ∆, DMFT indicates the
interesting result the metallic phase closes, with a direct band insulator to Mott insulator
transition occurring beyond ∆/W ≈ 1/8. We would like to study this within DQMC.
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Unfortunately, the sign problem, which becomes serious at intermediate ∆ ≈ t, prevents us
from exploring this full phase diagram at present.

However, one limit which we expect will be accessible, that is not have an insurmountable
sign problem, is the case of large ∆, where we have very widely separated bands. Related
studies of the boson-Hubbard model in a “superlattice” potential, which exhibit a band-
insulator to superfluid transition57–60,65, show the appearance of insulating phases at half-
integer fillings. These ‘charge-transfer’ insulators occur as a result of Mott splitting of the
widely separated bands101. It would be interesting to explore this possibility in the fermion
case.
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VI. CONCLUSIONS

In these notes and lectures we have tried to provide an introduction to the Anderson-
Hubbard Hamiltonian and some of the physics arising from the combination of interactions
and randomness. We have first seen how to understand the behavior of the clean model in
the limit of no interactions, no kinetic energy, small clusters, and mean field theory before
describing the determinant quantum monte carlo method and the results it gives.

One significant ommission concerning the physics of the Hubbard model is the idea of
a ‘Kondo resonance’. It turns out that as one progresses from weak to strong coupling,
the spectral function of the Hubbard model does not smoothly evolve from a single blob
to two upper and lower Hubbard bands. Instead, sometime in the course of changing the
interaction strength a three peak structure is in evidence: The beginning of the formation
of upper and lower Hubbard bands, but also a sharp peak at the Fermi energy. Actually, it
was originally thought that such peaks only arise in variants of the Hubbard model which
contain both localized and delocalized electrons. It is only relatively recently, with the
introduction of dynamical mean field theory (DMFT), that it was realized this sharp peak
occurs in the Hubbard model as well. This very important idea is at the heart of much of
the current research into the Hubbard model and its experimental realizations. DMFT is
also being applied to the study of the Anderson-Hubbard Hamiltonian and its variants, with
fascinating results104.
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VII. APPENDIX 1: CREATION AND DESTRUCTION OPERATORS AND THE

HUBBARD HAMILTONIAN

Creation and destruction operators,

â =

√

mω

2~
x̂+ i

√

1

2mω~
p̂

â† =

√

mω

2~
x̂− i

√

1

2mω~
p̂ , (56)

are familiar from the treatment of the harmonic oscillator. They are the language in which
tight-binding Hamiltonians like the Hubbard model are written, but differ in several re-
spects. Perhaps most confusing is that the fermion operators in the Hubbard model are not
introduced in terms of familiar position and momentum operators as are â, â† above. Rather
they stand on their own.

Also, instead of just one creation and one destruction operator, in the Hubbard model
there is a set of such operators, which are distinguished by attaching indices j and σ. Thus we
write ĉ†jσ and ĉjσ. The index j labels the spatial lattice site and the index σ labels the electron
spin (up or down). As a consequence, the occupation number states are no longer charac-
terized by a single number n, as for a single harmonic oscillator, but instead by a collection
of occupation numbers njσ. One writes such states as |n1↑ n2↑ n3↑ . . . . n1↓ n2↓ n3↓ . . . . 〉

Finally, because these operators are meant to describe fermions, they obey anticommu-

tation relations. (The anticommutator of two operators {Â, B̂} is defined to be ÂB̂ + B̂Â.)

{ĉjσ, ĉ†lσ′} = δj,lδσ,σ′

{ĉ†jσ, ĉ
†
lσ′} = 0

{ĉjσ, ĉlσ′} = 0. (57)

An immediate consequence of these anticommutation relations is the Pauli principle: the
maximum occupation of a particular site with a given spin is 1.

Exercise A1: Show that the Pauli exclusion principle is a consequence of the anticommutation
relation amongst the fermion creation operators by considering j = i and showing that
ĉ†jσ|1〉 = 0. Here |1〉 is the state with one electron on site j and with spin σ.

Note that while a fermion creation operator annihilates a state which already has a
fermion in it, its action on the empty state is ĉ†|0〉 = |1〉, which looks just like the bosonic op-
erator â†. Besides the Pauli principle, the anticommutation relations also ensure that the par-
ticles are fermions, that is, their wave function changes sign when two electrons with different
labels j are exchanged. To keep track of these signs, one needs to specify a convention for the
relation between a state like | 1 0 1 0 0 . . . 〉 and the vacuum state |vac〉 = | 0 0 0 0 0 . . . 〉.
The two possibilities, | 1 0 1 0 0 . . . 〉 = c†1c

†
3|vac〉 and | 1 0 1 0 0 . . . 〉 = c†3c

†
1|vac〉 differ by a

sign. Either definition is fine, but in all subsequent manipulations whatever convention was
chosen must be followed consistently.

Exercise A2: Suppose the indices labeling the fermion operators runs over eight possible
values. Figure out the occupation number state which results from the following applications
of the indicated creation and destruction operators. Choose as your convention that a given
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occupation number state is formed by acting on the vacuum state with the lowest indices
at the right of the string of creation operators. (This corresponds to the second of the two
choices discussed above.)

ĉ†5 ĉ
†
4 ĉ

†
2 |vac〉 = ?

ĉ†2 ĉ
†
4 ĉ

†
5 |vac〉 = ?

ĉ†4 ĉ
†
5 | 1 1 0 0 0 0 0 1 〉 = ?

ĉ†4 ĉ
†
5 | 1 1 0 0 1 0 0 1 〉 = ?

ĉ†1 ĉ2 | 0 1 0 0 1 0 0 1 〉 = ?

ĉ†1 ĉ4 | 0 1 0 0 1 0 0 1 〉 = ?

ĉ†1 ĉ5 | 0 1 0 0 1 0 0 1 〉 = ? (58)

Having introduced creation and annihilation operators, we can now write down the Hub-
bard Hamiltonian. Before doing so, let’s think about how we might simply describe the
motion and interactions of electrons in a solid.

First, we need to account for the fact that there is a regular array of nuclear positions
in a solid, which for simplicity we consider to be fixed. (In other words, we will not worry
about lattice vibrations.) This suggests that we begin with a lattice of atoms (sites) on
which the electrons move. A single atom is already a very complex structure, with many
different energy levels. The most simple ‘atom’ we can imagine would have a single energy
level. Then, the Pauli principle would tell us that at most two electrons (one with spin up
and one with spin down) can sit on this ‘atom’.

In a solid where electrons can move around, the electrons interact via a screened Coulomb
interaction. The biggest interaction will be for two electrons on the same atom. For sim-
plicity, Hubbard stops just there, so that interactions are modeled by a term which is zero
if the atom is empty of electrons or has only a single electron on it, but has the value U if
the atom has two electrons. There is no interaction between electrons on different sites.

Our kinetic energy will consist of an expression which allows electrons to move from one
site to its neighbors. The energy scale t which governs this ‘hopping’ will be determined
by the overlap of two wavefunctions on the pair of atoms. Since wavefunctions die off
exponentially, we can begin by allowing hopping only between the closest atoms in our
lattice.

Now let’s formalize this construction. We define c†jσ to be the operator which creates
an electron of spin σ on lattice site j. (We will now drop all the ‘hats’ which I had been
using to emphasize things were operators.) Similarly, cjσ is the destruction operator, and

njσ = c†jσcjσ is the number operator.
The Hubbard Hamiltonian is then,

H = −t
∑

〈j,l〉σ
c†jσclσ + U

∑

j

nj↑nj↓ − µ
∑

j

(nj↑ + nj↓). (59)

The first term is the kinetic energy: It describes the destruction of an electron of spin σ on
site l and its creation on site j (or vice-versa). The symbol 〈j, l〉 emphasizes that hopping
is allowed only between two sites which are adjacent. The second term is the interaction
energy. It goes through all the sites and adds an energy U if it finds that the site is doubly
occupied. The final term is a chemical potential which controls the filling. (See Exercise x.)
We refer to the situation where the filling is one electron per site as ‘half-filling’ since the
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lattice contains half as many electrons as the maximum number (two per site). Studies of
the Hubbard model often focus on the half-filled case because it exhibits a lot of interesting
phenomena (Mott insulating behavior, anti-ferromagnetic order, etc.)

Exercise A3: Show that the Hubbard Hamiltonian commutes with the operators N↑ =
∑

j nj↑ and N↓ =
∑

j nj↓. It is useful to begin by considering the commutator of the kinetic
energy on a single ‘link’ of the lattice connecting sites i and j with the total number of
electrons on those two sites. That is, begin by computing,

[c†iσcjσ + c†jσciσ, niσ + njσ] (60)

After working through the algebra, can you think of an argument that this should be the case
based on the structure of H, that is, based on how the creation and destruction operators
appear together?

As discussed in Appendix 1, the Hubbard Hamiltonian commutes with the total spin
up and spin down number operators, N↑ =

∑

j nj↑ and N↓ =
∑

j nj↓. Thus in finding the
eigenstates, we can consider different sectors of N↑ and N↓ separately. As might be expected,
in the non-interacting limit, from a solution in the single particle sector, N↑ = 1 and N↓ = 0
a solution of the many electron problem can be built.

Exercise A4: Suppose you have a one dimensional lattice of eight sites. Write down all the
occupation number states in the sector N↑ = 1, N↓ = 0, Figure out what H does to each
state. Use ‘periodic boundary conditions’ so that site eight is considered a neighbor of site
one. Write down the matrix for H using this basis.

In Exercise 41, we encounter an NxN tridiagonal matrix with “a” along the diagonal and
“b” above and below the diagonal, with periodic boundary conditions. The eigenvalues of
such a matrix are λk = a + 2b cosk where k takes on the discrete values kn = 2πn/N and
n = 1, 2, 3, . . . N .

Exercise 42: For general N , what is the eigenvector corresponding to n = N so that the
momentum k = 2π = 0? What is the eigenvector corresponding to n = N/2 which has
momentum k = 2π?

Using this result for the eigenvalues of a tridiagonal matrix, we see that the single particle,
one-dimensional Hubbard Hamiltonian has energy levels εk = −2t cos k. One can view this
as a simple ‘energy band’ of bandwidthW = 4t. This establishes a rough connection between
the hopping parameter t in the Hubbard Hamiltonian and physical energy scales like the
bandwidth W of a real material.

The eigenvalues of the Hubbard Hamiltonian at U = 0 in higher particle sectors are
obtained by occupying these single particle levels according to the restrictions of the Pauli
principle. It is amusing explicitly to re-do Exercise 2 in the N↑ = 2, N↓ = 0, computing
the eigenvalues (perhaps numerically with a LAPACK routine- there are 28 states!), and
verifying that they are indeed Pauli-restricted combinations of the eigenvalues obtained in
the single particle case.

Let us now look at the non-interacting limit in a more formal way by transforming to
momentum creation and destruction operators.

c†kσ =
1√
N

∑

l

eik·lc†lσ. (61)
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We can think about this process in analogy with the classical normal mode problem: We are
defining new (momentum) creation operators as a linear combination of the old (position)
ones. As we shall see in Exercises xx and xx, in the Hubbard model at U = 0 the different
momentum modes decouple from each other and behave independently, just as for classical
normal modes.

Notice that on a finite lattice the momentum k cannot be any real number but has
discretized values. For a one-dimensional lattice of N sites, the periodic boundary condition
c†N+1 = c†1 yields kn = 2πn/N . This is of course the same condition as when we considered
the eigenvalues of the tri-diagonal matrix above. For a two-dimensional square or three
dimensional cubic lattice, each component separately has such a discretization.

We know that the different Fourier functions are orthogonal. The analog for these discrete
site and momentum variables is given in the following Exercise:

Exercise 43: Prove the following two ‘orthogonality’ relations:

1

N

∑

l

ei(kn−km)l = δn,m (62)

1

N

∑

kn

eikn(l−j) = δl,j (63)

Exercise 4: Use the orthogonality relations invert Eq. 2, that is, to prove,

c†lσ =
1√
N

∑

k

e−ik·lc†kσ. (64)

Here, of course, the sum over k means you sum over the discrete allowed momenta kn.
With these relations in hand, we can show a lot of interesting things about the momentum
space operators.

Exercise 5: Verify the anticommutation relations

{ckσ, c†pσ′} = δk,pδσ,σ′

{c†kσ, c
†
pσ′} = 0

{ckσ, cpσ′} = 0. (65)

In other words, the anticommutation relations are “preserved” by this change in “basis”
from site indices to momentum indices.

We can now write down the U = 0 Hubbard model in terms of these momentum space
operators, and obtain more elegantly the same dispersion relation (energy band) as we
obtained by considering the matrix of H in the one particle sector.

Exercise 6: Show that for U = 0 the one dimensional Hubbard model is,

H =
∑

kσ

(εk − µ)c†kσckσ (66)

where εk = −2t cosk. As part of this Exercise, you will show that the sum of all the number
operators over different spatial sites and spin equals the sum of all the number operators
over different momenta and spin.
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It is important to realize that the result that an analysis of the one-particle sector gives
us full information about the model for any particle number rests only on the fact that the
interactions are turned off. It is not necessary that the hopping t between different sites be
the same for all pairs of sites, or that it be limited to near neighbors, or that the chemical
potential be the same on all sites. All that matters is that H be a quadratic form in the
fermion creation and destruction operators. To emphasize: To solve any Hamiltonian H
which takes the form H =

∑

i,j c
†
i hij cj with h a (symmetric) matrix of real numbers, simply

diagonalize h and allow the resulting energy levels to be filled in a way which satisfies the
exclusion principle. We will see an important application of this theorem when we do mean
field theory.

Exercise 7: Show that for U = 0 the two dimensional Hubbard model on a square lattice is

H =
∑

kσ

(εk − µ)c†kσckσ (67)

where εk = −2t (coskx + cosky).

In real space, all the different (site occupation) states in the U = 0 model are mixed with
each other. In momentum space the different states are decoupled: A fermion operator of
a give k appears only together with operators of the same k. This means that the different
momentum modes can be treated independently, leading to the following result.

Exercise 8: Show that the partition function of the U = 0 Hubbard model is given by

Z =
∏

k

(1 + e−β(εk−µ)). (68)

It is useful to remember that if a Hamiltonian is comprised of the sum of independent pieces
then the partition function is the product of the associated partition functions. Can you
prove this? The result is also true for classical systems.

Exercise 9: Compute the per site average occupation of the U = 0 Hubbard model and show
it is given by,

ρ =
∑

k

(1 + e+β(εk−µ))−1. (69)

Note this takes the form of the sum of the occupations of different pieces, and that the Fermi
function, fk = 1/[1 + eβ(ε(k)−µ)], naturally arises. Show that when µ = 0 the density ρ = 1
for any β if εk is of the form derived for the d = 1 or d = 2 square lattice Hubbard model.

The allowed k values together with the dispersion relation determine the density of states
N(E) which counts the number of ways in which the system can have a given energy E.
Formally, N(E) is defined by

N(E) =
1

N

∑

k

δ(E − εk). (70)

In the continuum limit (large number of sites) the sum over discrete momenta values is
replaced by an integral according to the rule 1

N

∑

k → (2π)−d
∫

dk , where d is the spa-
tial dimension. As a simple example, suppose we are in one dimension with a relativistic
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dispersion relation εk = ck for k > 0. We can get the density of states as follows:

N(E) = (2π)−1
∫

dkδ(E − ck) = (2π)−1
∫

dk
1

c
δ(E/c− k) = (2cπ)−1(1− θ(k)). (71)

Here the function 1 − θ(k) emphasizes that k > 0 is required. Likewise, for a quadratic
dispersion relation εk = ak2

N(E) = (2π)−1
∫

dkδ(E − ak2) = (2π)−1
∫

dk
1

2ak
δ(
√

E/a− k) = (4aπ)−1
√

a/E. (72)

Exercise 13: Compute (analytically) the density of states N(E) of one dimensional Hubbard
model. Explain whyN(E) diverges at E = ±2t in terms of a picture of the dispersion relation
E(k) = −2t cos k. Compute N(E) numerically and compare to your analytic calculation.

65



VIII. APPENDIX 2: FORMAL FOUNDATION OF CLASSICAL MONTE CARLO

A. Introduction

The Monte Carlo method is often referred to as a ‘computer experiment’. One might think
of this as a way of conveying the fact that the output of simulations is not an equation, as
in conventional theory. Instead, numbers appear on the computer screen in somewhat the
same way that numbers appear on a measuring device in the laboratory. Thus there is the
implication that somehow simulations are a bit of a ‘black box’ and that the use of the
computer is hiding the underlying physics. The purpose of this note is partly to emphasize
some of the mathematical rigor behind Monte Carlo: It is not a happy accident that the
computer is generating configurations with the desired probability distribution! Indeed, the
fundamental equations underlying simulations are the same as analytic theories, and one
can view simulations as a way of solving the mathematics (differential equations) when it
becomes too complicated for analytic techniques.

With all that said, it is still useful to pursue the ‘Monte Carlo as experiment’ point of
view. Consider the process of making a measurement in the laboratory. Nature prepares a
‘configuration’ i of the system, and the experimentalist takes that configuration and records
a value for some quantity of interest. To get better statistics (or perhaps inevitably because
of finite measuring time) nature actually produces many configurations, and the experimen-
talist averages over the values obtained. It is useful to emphasize that no matter how long
the experimentalist measures, the configurations she sees are an incredibly small subset of
those that the system is capable of exploring.

Nature uses some very complex rules for time evolving the system from configuration to
configuration, for example the many particle Newton or Schroedinger equations. These rules
govern the states that the experimentalist sees, and hence the data she takes.

Here’s one useful way to think about computer simulations: The goal of a computer
simulation is to devise a method where the computer plays a similar role to that of nature
for the experimentalist. That is, the computer generates configurations upon which we make
measurements. This leaves us with the problem of devising instructions for the computer
that replicate nature’s way of generating configurations.

One approach to constructing a simulation would be actually coding up the microscopic
equations governing the system’s time evolution. Simulations of classical systems going
under the name ‘molecular dynamics’ are actually done precisely this way. One computes
the force Fn on each particle n, uses the force to compute the acceleration an = Fn/m,
and then moves the velocity and position forward a small time interval dt with, vn →
vn + an dt; xn → xn + vn dt.

But in the spirit of statistical mechanics, we really don’t care about the microscopic time
evolution and the paths xn(t) and vn(t) the particles take in phase space. All we really need
is to replicate the probability P ({xn, vn}) that nature uses to generate her configurations. If
we can do that, we’ll get the same answers as the experimentalist!

If we were doing classical statistical mechanics, the probability distribution that we
would be attempting to emulate would be the Boltzmann distribution P ({xn, vn}) =
Z−1e−βE({xn,vn}). However, let’s discuss Monte Carlo within the context of a general probabil-
ity distribution. This will emphasize that Monte Carlo is by no means limited to Boltzmann
statistics. To make the notation less unwieldy, we will also label our probabilities by a
single index i which will be understood to represent particular values of all the degrees of
freedom of the system we are studying (for example i could mean a collection of positions
and velocities {xn, vn}). In the remainder of this note I will denote the inverse temperature
by β = 1/T , and set Boltzmann’s constant to unity.
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As we shall see, to do Monte Carlo, we actually don’t need to know pi, but only ratios of
pj/pi for two configurations. This is certainly an important point for statistical mechanics
since pj/pi = e−β(Ej−Ei) is known, but the individual pi involve the unknown partition
function Z.

B. Transition Probabilities and Detailed Balance

Our goal is to figure out a rule Tji to evolve the configuration i into the configuration j
which will generate configurations with a desired probability. More precisely, our process
will not be deterministic, but will involve random changes, so Tji will be the probability to
generate j from i.

Because probabilities are non-negative, and sum up to unity, the rule Tji satisfies,

Tji ≥ 0
∑

j

Tji = 1. (73)

A matrix obeying these two restrictions is called a ‘stochastic matrix’. Its eigenvalues obey
|λ| ≤ 1. Also, there is an eigenvector with eigenvalue λ = 1. These facts are simple to prove.

Consider the eigenvector equation,

∑

i

Tjivi = λvj. (74)

Take absolute values of both sides of the equation and use the fact that Tji ≥ 0 and the
triangle inequality.

∑

i

Tji |vi| ≥ |λ| |vj|. (75)

Now sum both sides of the equation over j and use the fact that
∑

j Tji = 1,

∑

i

|vi| ≥ |λ|
∑

j

|vj|. (76)

We now see that |λ| ≤ 1.
To show that a stochastic matrix has an eigenvalue of unity, consider the vector with all

components the same, vj = 1. Then, from the second line of Eq. 1,

∑

j

vjTji = vi. (77)

So the constant vector is a left eigenvector of T of eigenvalue 1. Remember that the eigen-
values of a matrix are the same whether one considers left or right eigenvectors, but the
eigenvectors themselves can be quite different unless the matrix is symmetric. This is im-
portant to keep in mind, because we will be showing that the right eigenvector of T is not
the trivial constant vector. In fact, the right eigenvector of T is pj.

That the eigenvalue λ = 1 is non-degenerate is a consequence of the Perron-Frobenius
theorem.
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Because T is our rule for generating one configuration from the next, we can view the
generation of a long sequence of configurations in the Monte Carlo process105 as the repeated
application of the matrix T . We know that when we repeatedly apply a matrix to a vector,
we project out the eigenvector of largest eigenvalue. As we have seen above, because T is
stochastic, we will generate the eignevector of eigenvalue 1.

So we can now make our goal a little bit more precise: We want to figure out T obeying
Eq. 1 whose eigenvector of eigenvalue one is the vector of desired probabilities pi. Then,
repeatedly applying T will give us p and we’re done.

It is easy to show that if we construct T to obey ‘detailed balance’,

Tji pi = Tij pj (78)

then pi is an eigenvector of T of eigenvalue 1:

∑

i

Tji pi =
∑

i

Tij pj = pj
∑

i

Tij = pj. (79)

It is also easy to formulate T to obey detailed balance. The most famous prescription is
due to Metropolis. The Metropolis algorithm says that one suggests a move from i to j and
then accepts the move with probability one if j is more likely than i, that is, if pj/pi > 1. If
j is less likely than i, accept j with probability pj/pi.

Exercise 1: Show that if you generate a random number r uniformly on [0, 1] and accept
the move when r < pj/pi, then the Metropolis algorithm is correctly implemented.
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C. Summary of Why Monte Carlo Works

The argument presented above can be summarized as follows:

[a] Metropolis ---> Detailed Balance ---> p is eigenvector of T of eigenvalue 1

[b] T is stochastic ---> max eigenvalue of T is 1

[a+b] p is eigenvector of T of largest eigenvalue

[c] repeated application of matrix results in eigenvector of largest eigenvalue

[a+b+c] repeated application of T gives p, as desired.

D. Summary of Monte Carlo Procedure

(i.) Take an initial configuration i and propose a change to a new configuration j.
(ii) Accept the new configuration with probability min(1, pj/pi).
(iii) Measure quantities of interest.
(iv) Repeat the process many times.

There are of course many subtleties: What sort of procedure is followed to “suggest
changes”? How many configurations do you need to generate and do you, as in some
experiments, need to allow the system time to equilibrate? We will address some of these
issues below.

E. Analogies Between Monte Carlo and Experiments

There are a number of useful analogies between Monte Carlo and experiment. Perhaps
most importantly, when first encountering Monte Carlo it is natural to wonder how the
relatively small sample of configurations that a computer generates could possibly replicate
the behavior of physical systems which have incredibly huge numbers of states. A partial
answer is provided by noting that the exact same question could be posed to any experi-
mentalist, where, similarly, measurements are based on a very small subset of states which
are generated by the time evolution during the course of the experiment.

Second, when one collects data in a Monte Carlo, one measures observables for each
configuration generated and then does a simple average over all the configurations. There
are no probabilities pi put in the averaging. The reason, of course, is that the computer
is putting the pi in for you, by generating the configurations with their correct pi. This is
just as in an experiment. No experimentalist weights her measurements with the Boltzmann
factor!

In addition to averages, error bars are generated in Monte Carlo just as in experiments.
(See Sec. XI.)

One often has to wait a little while after starting a simulation to allow the system to
equilibrate, much as the experimentalist will not start recording data until some time has
passed following perturbing the system in some way.

69



F. A Subtlety Concerning T and Detailed Balance

If you think about it, the transition matrix T actually has two pieces in its construction.
The first is the suggestion of a new state j, and the second is the decision (e.g. Metropolis)
whether to accept j or not. It is the combination of these two factors which determines T
and which must obey detailed balance. Examples of how the method of suggesting states
might go awry are given in Exercises 7 and 12.

G. Some Exercises

1. The Heat Bath Algorithm

The Metropolis algorithm is not the only way to go.

Exercise 2: Show that the “heat bath” prescription

Tji = pj/(pi + pj) (80)

obeys detailed balance.

Thus the starting point ’Metropolis’ of [a] in Sec. III can be replaced by ’Heat Bath’.

2. When Do You Measure?

Exercise 3: Consider a system with two states and associated probabilities p1, p2. Suppose
the observable A has the values A1 and A2 in the two states. What will you get for 〈A〉 if you
measure A only when a move is accepted? What is the correct value for 〈A〉? When should
you measure A to get the right answer? Argue qualitatively that, if p1 >> p2, the sequence
of configurations generated gives a sensible answer when you put your measurement in the
correct spot.

3. Explicitly Constructing the matrix T

Exercise 4: Consider a system with three states and associated probabilities p1, p2, p3. Con-
struct the 3x3 matrix for T assuming that if you are in a state i you suggest a change to one
of the other two states with probability 1

2
each, and then accept or reject with Metropolis.

Verify that your T obeys Eq. 1 and that the vector (p1 p2 p3) is a right eigenvector of T of
eigenvalue one. Verify the other two eigenvalues are less than one in absolute value.

Exercises 5 and 6 below emphasize that the rule T for generating states is not unique.
The art of Monte Carlo is in finding the T which works best, that is, which moves you
around in phase space most rapidly and generates the smallest error bars.

Exercise 5: Do Exercise 4 again, but use the heat bath algorithm.
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Exercise 6: Again consider the same three state system as Exercise 4. Construct the 3x3
matrix for T assuming that if you are in a state i you suggest a new state (which could
be the same as the one you are in) randomly, that is, with pick the new state to be 1 or
2 or 3, with probabilty 1

3
, and then do Metropolis. Verify that your T obeys Eq. 1 and

that the vector (p1 p2 p3) is a right eigenvector of T of eigenvalue one. Verify the other two
eigenvalues are less than one in absolute value. In which case is the next smallest eigenvalues
closer to |λ| = 1, here, or in Ex. 5?

Exercise 7: Consider a system with an infinite number of states Ei = ω i for i =
0, 1, 2, 3, . . . ., and associated probabilities pi ∝ e−βEi . Construct the matrix for T assuming
that your suggestion of a move from state i is to one of the two immediately adjacent states
j = i± 1, with probability 1

2
. Verify (p1 p2 p3 . . .) is a right eigenvector of T . Be especially

careful with the state i = 0 which has no state beneath it! Should you suggest state j = 1
all the time, since there is no j = −1? This is an example of the subtlety mentioned in
Sec. VI.

4. Very Simple Monte Carlo Simulations

Exercise 8: Write a Monte Carlo code which computes 〈E〉 for the three state system of
Exercise 4, using the T described in that exercise.

Exercise 9: Write a Monte Carlo code corresponding to the T of exercise 5.

Exercise 10: Write a Monte Carlo code corresponding to the T of exercise 6.

Exercise 11: Write a Monte Carlo simulation for an energy which has a continuous degree
of freedom x with E(x) = 1

2
kx2. Construct T by suggesting the new state x′ = x+∆(r− 1

2
)

where ∆ is the ‘step-size’, and r is a random number uniformly distributed on (0,1). Use
Metropolis to accept/reject x′. What is the correct value for 〈E〉? Show your code gets it,
for any value of ∆. What values of ∆ are best? See also Sec. XI below.

Exercise 12: Do Exercise 11 again, except this time construct T by suggesting the new state
x′ = x +∆(r − 1

3
), and then use Metropolis. Show you code gets the wrong value for 〈E〉.

Show that your T violates detailed balance, even though you use Metropolis after the move
suggestion.

5. Less Simple Monte Carlo Simulations

Many readers going through these notes have a particular (and presumably non-trivial)
problem they wish to address with Monte Carlo. If, however, you do not, a standard Monte
Carlo simulation to try is the two dimensional Ising model. Many books on simulations
contain descriptions.106–108
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6. Testing Monte Carlo Simulations

As with all codes, tests are essential. Here I will mention three very useful ones.
First, Monte Carlo simulation codes can often be tested on small lattices. That is, it

is often possible to enumerate all the possible states of a small system (e.g. a 4x4 Ising
lattice has 216 configurations) and have the computer then generate the partition function
and expectation values through an explicit enumeration of all the configurations.

Second, limits of the Hamiltonian in question are often soluble. At high and low temper-
atures, one often can figure out the values of the energy and other observables. Likewise, by
turning off one or more terms in the Hamiltonian, it may become analytically soluble. Or,
if you write your code so that the interactions are different in different directions, you can
sometimes turn off one or more directions and reduce the dimensionality of the system to a
point where analytic solutions are known.

Finally, while you will usually write your code so that it averages observable which should
be equivalent by some symmetry, looking at the unaveraged values first is often useful: Many
bugs in codes are fingered by measurements which should be equal by symmetry but are
not.

My experience is that if your code checks out for the entire model on small lattices, and
then individual pieces on different lattice sizes, and also the high and low T limits, then it
is very likely correct.

H. Quantum Monte Carlo

The above discussion seems to rely very heavily on the fact that the system is classical.
However, it turns out to be relatively easy to generalize classical Monte Carlo to Quantum

Monte Carlo. All I will say here is that one takes the operator e−βĤ and writes its trace as
a path integral. This sum over paths involves a classical action, which then can be attacked
with classical Monte Carlo. A nice discussion of this for the quantum harmonic oscillator
is given by Creutz.109 Another particularly interesting example is the mapping of the d = 1
Ising model in a transverse magnetic field onto the classical d = 2 Ising model.110

I. Relation to Molecular Dynamics

At the beginning of these notes, I mentioned that Molecular Dynamics (MD) as one way
we might get a computer to emulate nature. Since the equations of MD keep the energy
constant (to within time step errors), one way to view MD is as a Monte Carlo where the
proposed move does not change the energy, and is therefore accepted with unit probability
according to the Metropolis prescription. Thus MD and Monte Carlo should give the same
result, under the condition that the MD energy is initialized at the same value 〈E〉 as the
average energy which comes out of the Monte Carlo. This is the usual equivalence of the
canonical and microcanonical ensembles in statistical mechanics.

In practice, one might want to do MD at a particular temperature T instead of at fixed
E. One way to accomplish this is to evolve the positions and velocities xn and vn using the
MD equations, but then periodically ‘refresh’ the velocities by replacing their current values
with new ones drawn from the Gaussian distribution e−mnv2n/2T . Here mn is the mass of the
nth particle. We choose to ‘refresh’ the momenta, because usually the energy takes the form
E = 1

2

∑

nmnv
2
n + V ({xn}). That is, the potential energy doesn’t depend on the velocities.

So the probability distribution for the velocities is Gaussian, and we know how to generate
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Gaussian distributed random numbers. The positions usually invovle a more complicated V
than Gaussian.

This sort of finite T molecular dynamics can be understood as a Monte Carlo with two
types of moves. As remarked above, the conventional MD moves keep the energy constant
and hence are always accepted. The momentum refreshment moves change the energy and
hence are sometimes rejected according to the Metropolis prescription.

Exercise 13: Write a Molecular Dynamics code for E = 1
2
kx2+ 1

2
mv2. (That is, use F = −kx

and a = F/m to update v.) Verify that you travel along an ellipse in phase space at
constant energy, when dt is small. Here ‘dt small’ really means dt is much less than the
period 2π

√

m/k. Compute 〈x2〉 and 〈p2〉 and show you get the correct answers (which only
depend on x0 and v0). Note that the Molecular Dynamics integration of equation of motion
introduces time step errors. In the Euler method, the accumulation of these errors will lead
to an exponential increase in E. The “leap-frog” method is much more robust.

Exercise 14: Include steps which refresh the momentum. Compute 〈x2〉 and 〈p2〉 and show
you get the correct answers (which now do not depend on the initial conditions as in Ex. 13
but only on temperature T .)

J. Relation to the Langevin Equation

Monte Carlo can also be related to the Langevin Equation. Consider a system with an
energy E(x) which depends on the degree of freedom x. (For simplicity, let’s just consider
a single degree of freedom.) Suppose we define a procedure for updating x via

x′ = x− ε
∂E

∂x
+
√
4εT r (81)

Here r is a Gaussian random number, p(r) = e−r2/
√
π, and T is the temperature. We will

now show that this equation satisfies detailed balance with p(x) ∝ e−βE(x).
The Langevin Equation amounts to a prescription T for getting a new state x′ from an

original state x. Given x′ and x, the value of T is given by the probability of throwing the
appropriate random number which will take you from x to x′.

T (x′, x) =
1√
π
e−r2 (82)

r =
1√
4εT

(x′ − x+ ε
∂E

∂x
) (83)

Therefore, introducing the notation dx = x′ − x,

T (x′, x) =
1√
π
e−(dx+ε ∂E

∂x
)2/(4εT ) (84)

Likewise,

T (x, x′) =
1√
π
e−(−dx+ε ∂E

∂x
)2/(4εT ) (85)
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Note that actually the gradient of the energy n Eq. 13 should now be evaluated at x′, but
because ε is small, dx will be small and x′ close to x. Since the gradient is already multiplied
by ε the difference is higher order and we drop it.

Putting this together,

T (x′, x)

T (x, x′)
= e−

∂E
∂x

dx/T = e−dE/T = e−(E(x
′)−E(x))/T (86)

T (x, x′)e−E(x′)/T = T (x′, x)e−E(x)/T , (87)

where again we have dropped terms which are higher than linear order in ε. Eq. 15 completes
the demonstration that the Langevin equation obeys detailed balance. Hence by our general
theorems concerning Monte Carlo, it will generate configurations of the system according to
the Boltzmann distribution.

A final comment: You will notice that the prefactors of the random force and the force
which depends on E in the Langevin equation are not independent. This is an example of
the fluctuation-dissipation theorem.

Exercise 15: In proving detailed balance we threw away higher order terms in ε. Consider
the energy E(x) = 1

2
kx2 and go through the Langevin analysis retaining terms to all orders

in ε. Show that detailed balance is obeyed with a k shifted by order ε. Will 〈x2〉 be
overestimated or underestimated?

Exercise 16: Write a computer code to implement the Langevin equation for E(x) = 1
2
kx2.

Verify your results from Exercise 15.

K. Error Analysis in Monte Carlo

This final section is intended to review error analysis in Monte Carlo, and illustrate it
with the very simple example of a simulation of E(x) = 1

2
kx2.

1. Introduction and Definitions

We begin with the definitions,

〈x〉 = 1

N

N
∑

i=1

xi (88)

〈x2〉 = 1

N

N
∑

i=1

x2i (89)

σ =

√

〈x2〉 − 〈x〉2
N − 1

. (90)

Here xi is the ith measured value of x, andN is the number of measurements. The definitions
of 〈x〉 and 〈x2〉 are unambiguous. The entire content of this note is to clarify the proper
denominator of the definition of σ. Specifically, the formula for σ assumes that the N
measurements are all independent. Since successive values of x are generated from each
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FIG. 39: First 1000 steps in Monte Carlo time history of x for three different step sizes ∆ =

1, 10, 200. (Acceptance rates=0.70, 0.35, 0.02).

FIG. 40: Autocorrelation functions for the complete data sets (400,000 steps) as in figure 1. (Step

sizes ∆ = 1, 10, 200, Acceptance rates=0.70, 0.35, 0.02).

other, this is never true. The x values are more and more related the less time one waits
between measurements.

To quantify the correlations among successive x values, we define the autocorrelation
function,

c(l) =
1

N − l

N−l
∑

i=1

yiyi+l (91)

Here y(i) = x(i)− 〈x〉 measures the fluctuation of x about its average value. c(l) measures
whether those fluctuations are related for x values l measurements apart. Saying xi and xi+l

are independent means whether xi+l is above or below 〈x〉 (the sign of yi+l) is unrelated to
the sign of yi. If that is the case, c(l) = 0 (to within errors). Clearly c(0) is never zero. In
fact, c(0) = σ2. It is conventional to redefine c(0)→ c(0)/σ2 so that c(0) = 1.

2. Time Histories

Let’s begin by looking at actual time histories of x. I chose k = 1 and T = 2 so that
〈x2〉 = 2. The step size for suggested changes in x is ∆. I measure every Monte Carlo step
and ran for N = 400000 sweeps. Here of course since 〈x〉 = 0, yi = xi. The Monte Carlo
time histories are given in Figure 1. That the data are correlated is immediately evident. If
a value of xi is positive, its successors tend to be positive and similarly if it is negative. The
dependence on the step size ∆ is easy to interpret.
If ∆ is small you do not suggest much of a change, and successive values of x are highly
correlated. Likewise, if ∆ is large, most suggested Monte Carlo moves take you out of the
part of phase space of low energy and are rejected. (This results in the long flat regions of
the evolution of x.)

3. Correlation Functions

The plots of c(l) resulting from the same data are given in Figure 2. We see that c(l) has
a characteristic decaying exponential form. We define the correlation time τ to be the point
when c(l = τ) = e−1 and say that measurements of x are independent when l exceeds τ .
(Strictly speaking, we want c to go to zero, but c(τ) = e−1 is an acceptable criterion.) Notice
you can almost guess the values of τ given by Figure 2 directly from the time histories of
Figure 1.
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As mentioned earlier, in generating the above results I measured x every Monte Carlo
step. What happens if one instead measures only every mth step? Define cm(l) to be
the correlation function when measurements are only every mth Monte Carlo step. It is
easy to convince yourself that cm(l) = c1(ml), so the correlation function rescales in a
trivially fashion. The point is that if one choose m > τ , then the measurements all become
independent.

• So one way to ensure the value for the error bar σ is correct is to make sure measurements
are separated by a waiting time m > τ .

This approach has the advantage that one does not waste time making measurements
when the measurements are not independent.

4. Rebinning Data

An alternate (and equivalent) approach to getting the correct σ is by “rebinning” the
data. Take a file containing the complete time history of a measurement, for example the
data for x which is partially shown in Figure 1. Choose a “bin size” M , and average the
data for x over each of the L = N/M bins (remember N = total number of measurements)
to create L “binned measurements” mj.

mj =
1

M

M∗j
∑

i=M∗(j−1)+1
xi. (92)

Treat these L values for m as your independent measurements. As seen in Equation 5, the
values for m are already averages over M values of x. Define averages and error bars as in
Equation 1, with L replacing N in the normalizations 1/N and 1/

√
N − 1. The average 〈x〉

is independent of M since all one is doing is reordering a linear sum. The average 〈x2〉 is
however altered, and hence so is the error bar σ. Figure 3 shows values for σ as a function
of the number of x values in each bin, M .

What is the interpretation of Figure 3? Consider M = 1. In this case only one value of
x is put in each bin, so that in calculating σ it is assumed all x are independent. The error
bar σ thus obtained is too small. As M becomes larger, more x values are put in each bin,
the number of bins (independent measurements) decreases, and σ increases. Eventually σ
goes to an asymptotic value which gives the correct error bar.
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FIG. 41: Error bars for different bin sizes M . Data is that of Figures 1,2: step sizes ∆ = 1, 10, 200.

(Acceptance rates=0.70, 0.35, 0.02).

Why does σ not increase indefinitely as M increases? You might expect it to, since the
denominator

√
L− 1 is getting smaller and smaller. The answer is that as more measure-

ments are put in each bin, the different bins fluctuate less and less. The numerator which
measures these fluctuations decreases in exact compensation to the denominator. (However,
to reiterate, initially for M small when you put more measurements in the bins the new
values are not independent and so the numerator does not decrease.)

• So a second way to ensure the value for the error bar σ is correct is to consider different
binnings of the data, and use the value obtained asymptotically as each bin contains a lot of
data.

How do we see this result is consistent with the correlation function analysis? There
are two checks. The first is to see that the value for M at which σ starts to flatten out
should be roughly the same as the value of τ for which c(l) gets small. Second, one can
compare the values of σ1 at M = 1, where one assumes all the x are independent, with the
asymptotic value σ∞. The claim is that these should be related by σ∞ =

√
τσ1. You can

see this is roughly true: For ∆ = 1 we get σ1 = 0.0022 and σ∞ = 0.030 from Figure 3. If
you assume all the measurements are independent, you underestimate σ by more than an
order of magnitude. Meanwhile, from figure 2, τ ≈ 85, and hence

√
τ similarly reflects this

order of magnitude correction factor.

5. Acceptance Rate

The acceptance rate provides a rough guide to the choice of a good step size. If the
acceptance rate is too much greater than 0.5, then one is likely in the limit of Figures (1–3)a
where the correlation time is unnecessarily large due to small suggested moves. Likewise,
if the acceptance rate is too much less than 0.50, then one is likely in the limit of Figures
(1–3)c where the correlation time is unnecessarily large due to multiple rejections.

6. A “Cheap” Approach

I recommended a “cheapo” approach to error bars, which was to bin the data from your
run into 10 bins. (M = N/10.) This strategy assumes that you were doing a reasonably long
run, so that N/10 > τ . My thinking is that if this is violated, you are in more serious trouble
than just getting the wrong error bars: you will have less than 10 independent measurements
(and perhaps have not even properly equilibrated) so it is likely your expectation values
themselves are wrong. For the particular example we are doing, the reported values from
my simplistic approach for 〈x2〉 and σ were 1.973 ± 0.051, 1.993 ± 0.010, 1.995 ± 0.039 for
∆ = 1, 10, 200 respectively. These error bars should be the same as the asymptotic values
of σ in Figure 3.
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7. Final Comments

Does it matter which measurement you look at? I have looked entirely at xi in doing this
analysis. Would it matter if I had examined x2i or some other measurement? For this simple
problem I don’t think so. In more complicated simulations it may be important to calculate
correlation times separately for measurements of “local” quantities (observables for degrees
of freedom that are close together spatially) and “global” quantities (observables for degrees
of freedom that are far apart spatially). The spatial separation of the different degrees of
freedom in an observable can affect the autocorrelation time. In particular, observables
containing quantities which are widely spaced generally have longer correlation times.

More generally, the size of the system you are simulating (and hence the spatial separa-
tions of the degreees of freedom) can greatly affect the correlation time, especially in the
vicinity of a phase transition. Just as physical quantities like the specific heat, susceptibility
etc can diverge at a critical point, the correlation time can diverge too as the system size
increases near a critical point. This of course makes Monte Carlo very difficult. There is a
big literature on solving this problem.
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IX. APPENDIX 3: DETERMINANT QUANTUM MONTE CARLO

A. A Useful Analogy: Multidimensional Gaussian Integration

The equations involved in determinant QMC bear many similarities with multidimen-
sional Gaussian integrals. Reviewing these identities will help provide an intuitive feel for
the formulae of determinant QMC, within a familiar context.

The generalization of the one dimensional Gaussian integral,

∫ +∞

−∞
dx e−ax2 =

√
π

a
, (93)

to many dimensions is,

Z =

∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN e−~x A ~xT

=
πn/2

√
detA

. (94)

Here ~x is an N dimensional vector of real numbers and A is a real, symmetric, N dimensional
matrix. I have used the notation Z for the integral to emphasize that it would be the partition
function for a set of classical variables whose action is given by the quadratic form ~xA~x T .

We also know how to do these integrals when the integrand includes factors of xi.

〈xixj〉 = Z−1
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxN xixj e

−~xA~xT

=
1

2
[A−1]ij (95)

Again, the notation 〈xixj〉 emphasizes a possible statistical mechanical interpretation of the
ratio of integrals.

Further factors of xi in the integrand generate expressions like,

〈xixjxkxl〉 = Z−1
∫ +∞

−∞

∫ +∞

−∞
. . .

∫ +∞

−∞
dx1dx2 . . . dxNxixjxkxle

−~xA~xT

=
1

4
([A−1]ij[A

−1]kl + [A−1]ik[A
−1]jl + [A−1]il[A

−1]jk). (96)

These are similar in form to ‘Wick’s Theorem’, which tells us that contractions of products
of many fermion operators can be expressed as sums of products of contractions taken two
operators at a time, in all possible permutations.

While it is possible to do these integrals with arbitrary polynomials as part of the inte-
grand, they cannot be done when a quartic term appears in the exponential. We shall see
shortly the analogies of these various statements for traces over fermion Hamiltonians.

B. Basic Formalism of Determinant QMC

In solving the Hubbard model we want to evaluate expressions like

〈Â〉 = Z−1Tr [Âe−βĤ ]

Z = Tr e−βĤ (97)

The “Tr” is a trace over the 4N dimensional Hilbert space, where N is the number of sites.
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In analogy with multidimensional Gaussian integration, we can do such traces if they are
over quadratic forms of fermion operators. Suppose

Ĥ = (98)

Here h is an NxN matrix. The identity is,

Z = Tr e−βĤ = det[I + e−βh]. (99)

Note that while the original “Tr” is over a quantum mechanical 4N dimensional Hilbert space,
the “det” is a usual determinant of NxN matrices. “I” is the N dimensional identity matrix
and “h” is the matrix of numbers entering the definition of Ĥ. It is worth emphasizing
that because we are taking the trace over the full 4N dimensional Hilbert space, we are
including states of all occupation numbers. The determinant QMC method, as formulated
here, works in the grand canonical ensemble. Particle density is controlled by changing the
chemical potential.

It is trivial to check that Eq. 20 holds for a single fermion degree of freedom, with
Hamiltonian Ĥ = ε c†c. There are two states in the Hilbert space and

Z = 〈 0 | e−β ε c†c | 0〉+ 〈 1 | e−β ε c†c |1 〉 = 1 + e−β ε. (100)

More generally (e.g. for more than one fermion degree of freedom) Eq. 20 can be verified by
going to the basis where h is diagonal. The equations can also be derived by employing the
techniques of Grassman integration.

There is a more general identity. If one has a set of quadratic Hamiltonians l = 1, 2, . . . L

Ĥ(l) = (101)

then,

Z = Tr [e−∆τĤ(1)e−∆τĤ(2) · · · e−∆τĤ(L)] = det[ I + e−∆τh(1)e−∆τh(2) · · · e−∆τh(L)]. (102)

Here I have changed the prefactor in the exponential from β to ∆τ for reasons which will
soon be clear. It is also true that,

Gij = 〈ciσc†jσ〉 = Z−1Tr [c iσc
†
jσ e

−∆τH(1)e−∆τH(2) · · · e−∆τH(L) ]

= [ I + e−∆τh(1)e−∆τh(2) · · · e−∆τh(L) ]−1ij . (103)

The “fermions Greens function” is just an appropriate matrix element of the inverse of the
NxN matrix whose determinant gives the partition function.

The above formulae describe how to perform traces over quadratic forms of fermion
degrees of freedom. Unfortunately, the Hubbard Hamiltonian has an interaction term
Uni↑ni↓ = Uc†i↑ci↑c

†
i↓ci↓ which is quartic in the fermion operators. To handle such terms,

we employ the (discrete) Hubbard–Stratonovich transformation,

e−U∆τ(n↑− 12 )(n↓− 12 ) =
1

2
e−

U∆τ
4

∑

s

eλ s (n↑−n↓) (104)

Here coshλ = eU∆τ/2, and s is an Ising variable which can take on the two values S = ±1.
This identity can be verified by explicitly enumerating the 4 possible choices for n↑, n↓.
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Now we divide β = L∆τ and employ the Trotter decomposition. This allows us to isolate
different pieces of the Hamiltonian. We write Ĥ = K̂+V̂ where K̂ contains all the one–body
pieces and V̂ the on–site Hubbard interaction. Then,

Z = Tr e−βĤ = Tr [e−∆τĤ ]L ≈ Tr [ e−∆τK̂ e−∆τ V̂ e−∆τK̂ e−∆τ V̂ · · · ]. (105)

The final expression is only approximate since K̂ and V̂ do not commute. However, the
approximation becomes better and better as L increases (∆τ decreases). As mentioned
before, the errors should be pretty small if t U (∆τ)2 ≈ 1/10.

The e−∆τK̂ are quadratic in the fermion operators. For each factor of the L terms e−∆τ V̂

above, we introduce N Hubbard–Stratonovich fields, one for each of the spatial sites where
we have an on–site interaction to decouple. The Hubbard–Stratonovich field s(i, l) therefore

has two indices, space i and imaginary–time l. Now the e−∆τ V̂ (l) are also quadratic in the
fermion operators. We put an argument l on V̂ to emphasize that while the K̂ are all
identical, the V̂ (l) contain different Hubbard–Stratonovich fields on the different imaginary
time slices.

Applying Eqs. 22-23 allows the analytic evaluation of the trace,

Z =
∑

s(il)

detM↑ detM↓, (106)

with,

Mσ = I + e−ke−vσ(1)e−ke−vσ(2) · · · e−ke−vσ(L). (107)

We get a determinant for each of the two spin species. The quantum partition function has
now been expressed to a classical monte carlo problem: We need to sum over the possible
configurations of the real, classical, variables s(i, l) with the “Boltzmann weight” which is
the product of the two fermion determinants. Note that as in world-line QMC, the classical
variable to be summed over has an additional index l labeling imaginary time.

Eqs. 2-4 can now be understood as coming from applying the general operator identity
of Eqs. 22-23 to our specific problem of evaluating Eq. 26, with the interaction operators V̂
made into quadratic forms by using Eq. 25.

The algorithm, as stated, scales in CPU time asN 4L. The reason is that re–evaluating the
determinant ofM ′ takes N 3 operations, and we must do that NL times to sweep through all
the Hubbard–Stratonovich variables (if, as is typically done, we change just one at a time).
This scaling can be reduced to N 3L. (In what follows I will drop the spin indices.) The idea
is to write M ′ =M + dM and the ratio of determinants as,

detM ′/detM = det(M−1M ′) = det(M−1 (M + dM)) = det(I +GdM), (108)

with the definition G =M−1. It turns out that dM is very simple because when a Hubbard–
Stratonovich field is flipped, a single diagonal entry in v(l) changes. Because dM is sparse,
the evaluation of det(I +GdM) takes a cpu time independent of N and L! In fact, a little
bit of thought will convince you that Eq. 6 arises from Eq. 31 and the form for dM .

However, we need to know G = M−1 for this calculation, and once the Hubbard-
Stratonovich field change is made, one needs to update G. This updating G does not
take N 3 iterations, as one might expect of a matrix inversion, but can be done in only N 2

operations, again as a result of the simplicity of the change dM . The relevant identity which
relates the new G′ = (M + dM)−1 to the old G = M−1 is an application of the “Sherman–
Morrison” formula given, for example, in Press’s ‘Numerical Recipes’. If you work through
the Sherman-Morrison formula, as applied to our problem, you end up with Eqs. 7-8.
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A final comment concerns the need for ‘wrapping’ Eq. 9. The use of Eq. 31 to derive
Eq. 6, and the Serman-Morrison formula to derive Eqs. 7-8 require that the imaginary time
slice of the Hubbard-Stratonovich variable being updated be at the end of the product in
Eq. 28. The process of wrapping moves the appropriate interaction matrix to the end of the
product through a cyclic permutation. That is,

[e−ke−vσ(L)] [I + e−ke−vσ(1)e−ke−vσ(2) · · · e−ke−vσ(L)]−1 [e−ke−vσ(L)]−1 (109)

= [I + e−ke−vσ(L)e−ke−vσ(1) · · · e−ke−vσ(L−1)]−1 (110)

C. Subtleties and “Tricks of the Trade”

While the above formulae allow you to write a “bare–bones” determinant QMC algorithm,
there are a number of refinements which are important.
(1.) It is possible to measure correlation functions with non–zero imaginary time separation,
but this requires considerably more work. Analytic continuation of such correlations is
required to get the dynamical response. That is quite difficult.
(2.) The product of matrices required in constructing M and hence G = M−1 (see Eq. 5
and Eq. 28) is numerically unstable at low temperatures and strong couplings. That is, the
product has a very high ratio of largest to smallest eigenvalue. Special “stabilization” is
required to do the matrix manipulations. While these add to the complexity of the code,
they however have no content in the sense that all the above equations are valid, it is just
a question of how best to multiply matrices on a machine of finite precision.
(3.) The determinants of the matrices can go negative. This is called the “fermion sign
problem.” The sign problem does not occur for certain special cases. For example, if U is
negative (the “attractive” Hubbard model), the individual determinants can go negative,
but the matrices are always equal and hence the determinant appears as a perfect square.
This is a consequence of the fact that the appropriate Hubbard–Stratonovich transformation
couples S to the charge n↑ + n↓ as opposed to the spin as given in Eq. 25 for the repulsive
model. If U is positive but the chemical potential µ = U/2 (“half–filling”) one is also okay.
The matrices are not identical in this case, but the determinants are nevertheless related by
a positive factor, that is, they again have the same sign, so their product is always positive.
Some types of randomness are also acceptable. It is okay for the hoppings t and interactions
U to depend on the link or site. These statements are demonstrated by various particle–hole
transformations on the Hamiltonian.
(4.) Alternate Hubbard–Stratonovich transformations are possible. One can couple more
symmetrically to the spin, that is not single out the z component Or, one can couple to
pair creation operators. So far, all such alternatives give a worse sign problem than the
transformation Eq. 25. These more complicated transformations are needed to do ‘Hund’s
rule terms’ in multi-orbital Hubbard models.
(5.) Very similar “ground state” determinant simulations exist which work at T = 0 and in
the canonical ensemble.

D. What Determinant QMC Simulations Can Do

The state of the art of determinant QMC simulations, in the absence of a sign problem,
are studies of several hundred electrons down to temperatures of βt = 10− 20. In terms of
temperature and bandwidth, this means T of roughly 1/100 of the bandwidthW = 8t of the
2-d Hubbard model. This is plenty cold enough to see well developed magnetic correlations.
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For typical parameters, t = 1, U = 4 one chooses ∆τ = 1/8 so these beta values correspond
to roughly L = 100, and the simulation involves approximately 104 Hubbard–Stratonovich
variables.

In cases where one has a sign problem, βt is limited to 4–5. This is, unfortunately,
not low enough in temperature to make conclusive statements about certain important
problems, perhaps most prominently the question of the existence of long range d−wave
superconducting correlations in the Hubbard model away from half-filling.

E. Concluding Remarks

Determinant QMC is a powerful method for simulating interacting electron Hamiltonians
in more than one dimension. One can easily study problems with several hundred particles,
an order of magnitude greater than with exact diagonalization, and often large enough to
make compelling finite size scaling analysis. The sign problem is a very significant limitation,
however. For the repulsive Hubbard model, one can go to temperatures on the order of
W/30 where W is the bandwidth. For special cases like the attractive Hubbard model or
the repulsive model at half-filling, there is no sign problem, and the ground state properties
can be obtained.

Algorithm development in determinant QMC currently focusses on applications to
DMFT, where the Hubbard-Stratonovich field is allowed to fluctuate only in imaginary
time. A number of questions are being actively explored in this field: How does one incor-
porate more complex (e.g. Hund’s rules) interactions into simulation which include multiple
orbitals? Can one re-introduce some degree of spatial fluctuations?
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X. APPENDIX 4: SUPPLEMENTARY MATERIAL

A. Particle-Hole Symmetry

The Hubbard Hamiltonian has a fascinating ‘particle-hole’ symmetry which allows us to
relate its properties for different values of the parameters. Particle-Hole symmetry also plays
an important role in quantum monte carlo simulations. Consider the introduction of new
operators which exchange the role of creation and destruction:

d†iσ = (−1)iciσ (111)

The meaning of the (−1)i will be explained further below.

Exercise 59: Verify that the number operator for the d particles equals one minus the number
operator for c particles: d†iσdiσ = 1 − c†iσciσ. What happens to the interaction term in the
Hubbard model U(n↑ − 1

2
)(n↓ − 1

2
) under the particle-hole transformation?

Before seeing what happens to the kinetic energy term under a particle-hole transforma-
tion, we introduce the idea of a bipartite lattice. A bipartitie lattice is one which can be
divided into two sublattices A and B in such a way that a site in A has neighbors which are
all members of B and vice-versa. The (−1)i factor in the particle-hole transformation takes
the value −1 on one sublattice and +1 on the other.

Exercise 60: Is a one dimensional chain a bipartite lattice? How about a two-dimensional
square lattice?

Exercise 61: Is the triangular lattice bipartite? What about the honeycomb lattice?

The following Exercise determines what happens to the kinetic energy term when the
particle-hole transformation is performed.

Exercise 62: Verify that the kinetic energy is unchanged under a particle-hole transforma-
tion. That is, it takes exactly the same form in terms of the d operators as it did in terms
of the c operators. Where does the bipartite nature of the lattice come enter? What role do
the (−1)i factors play?

What have we learned? Exercises 58 and 61 tell us that the Hubbard model, when the
interaction term is written in the particle-hole symmetric form, is invariant under particle-
hole transformations when µ = 0. The condition µ = 0 is necessary since the number
operators which µ multiplies are not invariant but go into one minus themselves. Actually,
a more precise statement is that the Hubbard model with a given µ maps into the Hubbard
model with the sign of the chemical potential reversed, that is, with µ replaced by −µ. In
fact, this implies that the whole phase diagram of the Hubbard model on a bipartite lattice
is symmetric about half-filling, as the following Exercises suggest.

Exercise 63: Show that the density of the Hubbard model on a bipartite lattice obeys the
relation ρ(µ) = 2 − ρ(−µ) by starting with ρ = 〈n↑ + n↓〉 and making a particle-hole
transformation.
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Exercise 64: Show that the local moment of the Hubbard model on a bipartite lattice obeys
the relation 〈m2〉(µ) = 〈m2〉(−µ).

Exercise 65: Look back at you pictures of the density of states N(E) obtained in Exercises
27-30 and explain their behavior when reflected about E = 0 in terms of particle-hole
symmetry.

B. Relation between the attractive and Repulsive Hubbard Models

It is also interesting to consider what happens when a particle-hole transformation is
performed only on one of the spin species.

Exercise 66:

Show that if we perform the transformation,

di↑ = ci↑

di↓ = (−1)ic†i↓
the sign of the interaction term reverses, while the kinetic energy remains unchanges.

The Hubbard model with −U is called the attractive Hubbard model because a negative
value of U represents an attraction between spin up and psin down electrons on the same
site. By considering various operators one can show that magnetic order in the +U Hubbard
model is related to superconducting and charge order in the −U Hubbard model, so that
an understanding of the phases of one model immediately implies considerable information
about the other.

Exercise 67: Show that under a particle-hole transformation of just the down spin species,
the following operator mappings occur. (Ignore constants.)

mz,i = ni↑ − ni↓ ↔ ni = ni↑ + ni↓

m+,i = c†i↑ci↓ ↔ c†i↑c
†
i↓

m−,i = c†i↓ci↑ ↔ ci↓ci↑

The physical content of these results is that spin correlations along the z axis are inter-
changed with charge correlations, and spin correlations along the x and y axes (which are
compinations of m+ and m−) are interchanged with pairing correlations.

C. Alternates to Determinant QMC

1. World Line Quantum Monte Carlo

A discussion of the path integral formulation of quantum mechanics, starting with the har-
monic oscillator and then moving to quantum spins, bosons, and fermions, with an emphasis
on Quantum Monte Carlo, can be found at: http://leopard.ucdavis.edu/rts/resproj6.html
by hitting the ‘World-Line Quantum Monte Carlo” link (number 88).
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A shorter discussion which starts immediately with the Heisenberg model can be found
at: http://leopard.ucdavis.edu/rts/boulder.html by hitting the ‘Lecture II (pdf file) link.

2. Dynamical Mean Field Theory

One of the reasons for the continued interest in the Hubbard model is because of a
recently developed approach known as ‘dynamical mean field theory’ (DMFT). This new
technique has allowed for very interesting solutions of the Hubbard model itself, and also,
more importantly, has provided a framework for the inclusion of Hubbard-type interactions
into density functional theory. A ‘popular’ introduction to DMFT is available in: while a
much more complete technical review is in: “Strongly Correlated Materials: Insights From
Dynamical Mean-Field Theory,” Physics Today, March, 2004. A. Georges, G. Kotliar, W.
Krauth, and M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).
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