Dimerized & frustrated spin chains

Application to copper-germanate

Outline

- CuGeO & basic microscopic models
- Excitation spectrum
- Confront theory to experiments
- Doping Spin-Peierls chains

A typical S=1/2 dimerized chain

Structure of CuGeO₃

Chains direction (copper atoms)

Schematic dimerized GS

Spin-Peierls: dimerized GS (X-ray) if $T < T_{SP}$

Basics microscopic models

$$H_{XXZ} = \frac{J}{2} \sum_{i} \{ (S_i^+ S_j^- + S_i^- S_j^+) + J_z S_i^z S_j^z \}$$

- Bethe Ansatz:
 - Bethe 1931 (SU(2) Heisenberg $J_z = J$)
 - Luther & Peschel 1975
- Bosonization & Renormalization Group

Bosonization (notions)

Field theory in the long wave-length limit:

Bosonic field Φ and conjugate Π

$$S^{+}(x) = \frac{e^{-i\theta(x)}}{\sqrt{2\pi a}} (\exp(-i\pi x/a) + \cos 2\Phi(x))$$
$$S^{z}(x) = -\frac{1}{\pi} \partial_{x} \Phi(x) + \exp(i\pi x/a) \frac{\cos 2\Phi(x)}{a\pi}$$
where the angle $\theta = \pi \int \Pi dx$

Sine-Gordon field-theory model

Spin-spin correlation functions

$$\langle S^{z}(x)S^{z}(0)
angle \sim (-1)^{x}rac{1}{x^{2K}}$$

 $\langle S^{+}(x)S^{-}(0)
angle \sim (-1)^{x}rac{1}{x^{1/2K}}$

- XY model: g=0 & K=1
- Heisenberg: SU(2) symmetric => K=1/2

Renormalization Group Stability of the Luttinger Liquid Jose et al., 1977

Treat g in perturbation

change of scale:
$$l = \ln(L) \rightarrow l + dl$$

Equivalent to **Kosterlitz-Thouless** equations for superfluid transition (2D classical XY model)

Phase diagram of XXZ chain

- If $K \ge 1/2$: the Luttinger Liquid is stable
- If K < 1/2: g flows to strong coupling
- From Bethe-Ansatz:

$$K = \frac{\pi}{2(\pi - \arccos\left(J_z/J\right))}$$

For $|J_z/J| \le 1$: Luttinger liquid For $|J_z/J| > 1$: Ising (AF or F) gapped phase

Frustrated (or zig-zag) chain model

$H_{\mathsf{F}} = J \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + J_2 \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2}$

Spontaneous symmetry breaking

Relevant perturbation:

$$H_{\text{pert}} = (\alpha - \alpha_c) \cos(4\Phi)$$

$$\bullet \bullet \bullet \bullet \bullet \bullet (A)$$
ou
$$\bullet \bullet \bullet \bullet \bullet (A)$$

$$2\Phi = \pm \frac{\pi}{2}$$

 $\alpha > \alpha_c$:

Dimerized GS (two-fold degenerate)

Majumdar-Ghosh exact GS

J. Math. Phys. 10, 1399 (1969)

Special point: $\alpha = J_2/J = 0.5$

Spin-gap of order ~J/4 & very short spin correlation length

Simple proof

$$H_{MG} = \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \frac{1}{2} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2}$$

Can be re-written as:

$$H_{MG} = \frac{1}{4} \sum_{i} (\mathbf{S}_{i} + \mathbf{S}_{i+1} + \mathbf{S}_{i+2})^{2} - \frac{3}{4} \sum_{i} (\mathbf{S}_{i})^{2}$$

spin-1/2 on each "triangle" (1,i+1,i+2)

$$E_{MG} = -\frac{1}{2}S(S+1) = -\frac{3}{8}$$

Numerical investigation

DMRG on rings with up to 200 sites White & Affleck, PRB 54, 9862 (1996)

- "Quantum critical point" at $\alpha_c \simeq 0.2412$ => Kosterlitz-Thouless transition:
- $\alpha \leq \alpha_c$: "critical" or "quasi-ordered" phase
- $\alpha \geq \alpha_c$: spin-gapped dimerized phase:

$$\Delta^{01} \propto \exp\left(- ext{Cst}/(lpha-lpha_c)
ight)$$

Spin-Peierls "standard" model **Frustration** $H_{\mathsf{SP}} = \sum_{i} (1 + (-1)^{i} \delta) \mathbf{S}_{i} \cdot \mathbf{S}_{i+1} + \alpha J \sum_{i} \mathbf{S}_{i} \cdot \mathbf{S}_{i+2}$ **Fixed dimerization** Assuming a magneto-elastic coupling to a 2D lattice

Effect of the dimerization

$$H_D = J\delta \sum_i (-1)^i \mathbf{S}_i \cdot \mathbf{S}_{i+1}$$

.

Bosonized form:

$$H_D = c\delta \int \frac{dx}{2\pi} \sin(2\Phi)$$

 \Rightarrow Perturbation always relevant

 \Rightarrow Lift degeneracy & select one specific GS:

$$2\Phi = -\pi/2$$

Complete phase diagram

Parameters for copper-germanate

- Spin-Peierls transition at T=14K
- $J_1 \sim 150 K$, $\alpha \sim 0.36$, $\delta \sim 0.014$

Riera & Dobry, PRB **51**, 16098 (1995) Castilla et al., PRL **75**, 1823 (1995)

Excitation spectrum

(De)confinement Confront theory to experiment !

Topological excitations of dimerized chain

Simple qualitative argument:

Other terminology: kink & anti-kinks (from bosonisation !)

Low energy spectrum in dimerized chain

Analogy with Schrödinger eq. in linear potential

to create a $s\overline{s}$ pair excitation

Linear potential for soliton-antisoliton

$$-\frac{\partial^2 \Phi}{\partial x^2} + c \delta x \Phi = E \Phi$$

Change of scale: x=ay

$$(c\delta)^{2/3}\left(-\frac{\partial^2 \Phi}{\partial y^2} + c\delta y\Phi\right) = E\Phi$$

Singlet-triplet gap $\Delta^{01}(\delta) - \Delta^{01}(0) \sim \delta^{2/3}$

Properties of soliton-antisoliton boundstates

Low energy spectrum (ED of a 28-site ring)

- * Mobile $s\overline{s}$ pair \Rightarrow finite dispersion
- Associated to peaks in the magnetic Structure Factor:

$$egin{array}{c} A = S_k^Z \ \Downarrow \ S(k,\omega) \end{array}$$

Sorensen et al., PRB 58, R14701 (1999)

Experiments in copper-germanate

Raman scattering

Inelastic Neutron scattering

Loudon-Floury operator $A_{\mathsf{Raman}} \sim \sum_i \mathbf{S}_i \cdot \mathbf{S}_{i+1}$

$$A_{\rm INS} = {f S}_{f k}$$

$$\int I(\omega) = \langle A(t)A^{\dagger}(0) \rangle_{\omega} \int$$

Two-magnon scattering with selection rules:

$$k = 0$$
 and $\Delta S = 0$

Dynamical spin structure factor

All k's and
$$\Delta S = 1$$

Raman scattering

Els et al., PRL 79, 5138 (1997)

Well defined low energy singlet excitations !

Neutron inelastic scattering

Aïn et al., PRL 78, 1560 (1997)

Sharp triplet excitation => soliton-antisoliton pair

Doping Spin-Peierls chains by static non-magnetic impurities

Doping with non-magnetic impurities

$$Cu_{1-x}M_xGeO_3$$
: $Cu^{2+} \rightarrow M^{2+} = Zn^{2+}$ or Mg^{2+}

Spin down tries to delocalize to gain kinetic energy

Excitation spectrum next to impurity

Edge state wavefunctions

Raman scattering – doped system

Coexistence between SP & AF

Anisotropic spin-lattice model

Dobry et al., PRB 60, 4065 (1999)

$$H_{\text{mag}} = J \sum_{i,a} \{ (1 + \delta_{i,a}) \mathbf{S}_{i,a} \cdot \mathbf{S}_{i+1,a} + J_{\perp} \mathbf{S}_{i,a} \cdot \mathbf{S}_{i,a+1} \}$$
Spontaneous dimerization: $\delta_{i,a} \propto (-1)^{i}$
Leads to effective coupling
between impurities
$$H_{\text{el}} = \sum_{i,a} \{ \frac{1}{2} K_{\parallel} \delta_{i,a}^{2} + K_{\perp} \delta_{i,a} \delta_{i,a+1} \}$$
1) Inforces in- or out-of-phase dimerization between chains
2) Leads to confinement of S=1/2 spinons next to impurities

Effective magnetic interaction between induced spins 1/2

- Doping with non-magnetic impurities induces localized spins ¹/₂
- At low T => only localized spins degrees of freedom relevant (because of spin gap)
- Effective model:

Summary / conclusions

- Rich physical behaviors in dimerized chains: spin gap, solitons, confinement of solitons, ...
- Unique opportunity to confront theory & experiments (e.g. CuGeO3) in details
- Doping SP system provides a new PROBE of local physics + offers new phenomena (like co-existence etc...)