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Abstract

The stability of multielectron bubbles (MEBs) in liquid helium is investigated

using the liquid-drop model for fissioning nuclei. Whereas a critical positive

pressure can make the bubble unstable against fissioning, a small negative

pressure suffices to introduce a restoring force preventing any small deforma-

tion of the bubble to grow. We also find that there exists an energy barrier

making MEBs metastable against fissioning at zero pressure. The results

obtained here overcome the difficulties associated with the Rayleigh-Plesset

equation previously used to study bubble stability, and shed new light on

the limits of achievable bubble geometries in recently proposed experiments

devised to stabilize MEBs.
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I. INTRODUCTION

Multielectron bubbles (MEBs) are fascinating entities which appear when a surface of

bulk helium covered by a 2D film of electrons becomes unstable [1,2]. MEBs are cavities in

the liquid helium, filled with electrons that form a 2D spherical layer at the inner surface of

the bubble. Recent proposals to stabilize MEBs [3] have stimulated theoretical investigations

into its properties [4,5], since this system holds the promise of studying the electron gas in

a controlled way, bereft from material impurities. The density of this electron gas can be

tuned over more than four orders of magnitude by pressurizing the liquid helium [5] and this

tunability would make the observation of a hexatic phase [4] and the quantum melting of

a ripplopolaron Wigner lattice [6,7] experimentally feasible. For these investigations, both

theoretical and experimental, the question of the stability of multielectron bubbles is of

crucial importance. In this paper, the results reported in a recent letter [5] on the pressure

dependence of the frequency of the modes of deformation of an MEB are discussed in the

framework of new results obtained using the Bohr model for fissioning [8].

The energy and the radius of a multielectron bubble with N electrons can be estimated

by balancing the surface tension with the electrostatic Coulomb repulsion [9]. In this ap-

proximation, the energy of the MEB is proportional to N 4/3, so that the energy of a single

bubble with N electrons is larger than the energy of two bubbles at infinite distance and

with N/2 electrons each. The lower energy of the fissioned bubble has led to speculations

about the stability of multielectron bubbles. Since MEBs with N up to 108 were observed

experimentally [1,2], albeit in a transient manner (lasting a few msec), there must exist a

formation barrier preventing the fissioning of MEBs. Early investigations ruled out grav-

itationally induced instabilities and tunneling decay of the bubbles as possible fissioning

mechanisms [9]. Salomaa and Williams [10] considered dynamical stability against “boiling

off” a single electron from a multielectron bubble and found stability against this type of

fission for bubbles with N > 15 − 20.

Preceding studies of the small amplitude oscillations of the bubble shape [10,5] have
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shown that the quadrupole mode of oscillation has a vanishing frequency when no pressure

is applied on the liquid helium. Furthermore it was shown that with increasing positive

pressure successive modes can be driven to a vanishing frequency [5]. The amplitude of

modes of deformation that have a vanishing frequency can grow until they become of the

order of the bubble radius. This deformational instability can lead to fissioning of the bubble.

Salomaa and Williams [10] have investigated the dynamics of this deformational instability

using coupled Rayleigh-Plesset equations for the deformation amplitudes and the bubble

radius, and found that when the initial amplitude of the quadrupole mode of deformation

is larger than ∼ 6% of the bubble radius, the amplitude of the oscillation keeps growing

as a function of time. However, their method is not valid when the oscillation amplitude

becomes comparable to the radius of the bubble; hence we need to develop a new approach

to describe the fission process.

II. THE BOHR MODEL FOR FISSIONING MULTIELECTRON BUBBLES

In this paper, we apply the Bohr liquid-drop model of fissioning nuclei [8] to MEBs.

This method is valid for both small and large amplitude deformations of atomic nuclei and

describes the nucleus as a charged droplet with surface tension. It was recently successfully

improved to derive the fragment mass asymmetries in nuclear fission [11]. In such models

of nuclear fission, and similar models for the breaking up of homogeneously charged liquid

droplets, an approximation is used to calculate the properties of the fission process. This

approximation consists of describing the surface of the splitting nucleus (or droplet) in terms

of two or three quadratic forms (spheroids and hyperboloids). Such a surface is parametrized

in cylindrical coordinates through

ρ =























√

aL − bL(z − fL)2 for z0 6 z 6 z1

√

aM − bM(z − fM)2 for z1 6 z 6 z2

√

aR − bR(z − fR)2 for z2 6 z 6 z3

(1)

where
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ai is the square of the semimajor axis of the spheroid along the radial direction. For a

hyperboloid, ai is negative (i = L, M, R);

bi is the deformation parameter: the square of radial semimajor axis divided by the square

of the longitudinal semimajor axis;

fi is the centre of the spheroid (hyperboloid);

z0 = fL − aL/
√

bL is the leftmost point of the shape;

z3 = fR + aR/
√

bR is the rightmost point of the shape.

These parameters are illustrated in Fig. 1. The surface determined by (1) describes the shape

of the bubble and allows to investigate both spheroidal bubbles and emerging spheroidal

fragments. The shape parameters {aL, aM , aR}, {bL, bM , bR}, {fL, fM , fR}, {z1, z2} are not

independent if one imposes continuity and continuous derivatives at the meeting points

of the quadratic forms. These conditions, together with fixing the origin at z0 to remove

translations from the set of shape changes under consideration, allows to eliminate five of

the eleven variables. The six independent parameters that are kept in our treatment are:

aL, bL, aR, bR, fR − fL and z1. For a droplet of incompressible fluid, there would be another

constraint (that of fixed volume) to remove one more parameter, but in the case of MEBs

the volume does not have to remain constant during deformations [5].

Within this model, an expression for the energy of a bubble with a given shape (fixed by

choosing the shape parameters aL, bL, aR, bR, fR − fL and z1) is obtained. The stable shape

of the bubble is found by minimizing the energy as a function of the shape parameters –

the shape parameters set up a ‘shape space’. Both the case of the spherical, unsplit bubble

and the case of a bubble split in two fragments can be described with appropriate shape

parameters, so these two cases can be represented by distinct points in the shape space. The

dynamics of the fissioning of the multielectron bubble can then be studied by determining

the energy along the trajectories in shape space which go from the point representing the

spherical, unsplit bubble to the point representing a bubble split in two. The unsplit bubble
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may have a higher energy than the fissioned bubble, but if there is an energy barrier along

each trajectory in shape space, then the single bubble is metastable with respect to fissioning.

The height of the energy barrier along the optimal fissioning trajectory is the metastability

energy barrier.

In section III we set up the expression for the energy of a bubble with given shape

parameters (the energy of a given point in shape space). In section IV, we discuss the

results of the minimization of the energy in shape space and the results for the optimal

trajectory for fissioning of a multielectron bubble.

III. ENERGY OF A DEFORMED MEB

The energy of an MEB is determined as a function of the shape of the bubble by three

contributions: (i) the surface tension energy Eσ = σS where σ = 3.6 × 10−4 J/m2 is the

surface tension of liquid helium and S is the bubble surface, (ii) the pressure-related energy

Ep = pV where p is the (experimentally tunable) difference in pressure inside and outside

the bubble and V is the volume of the MEB; and (iii) the electrostatic repulsion energy EC

of the electrons. The first two terms are easily evaluated since the surface and volume of

the bubble are related straightforwardly to the shape parameters. The surface is given by

S =
∑

i=1,2,3≡L,M,R

π

zi−fi
∫

zi−1−fi

√

ai + bi(bi − 1)x2dx, (2)

where in the case of split bubbles (bM < 0 and aM < 0) the integration domain should not

include the region of space in between the bubble fragments. The volume is

V =

fR+
√

aR/bR
∫

fL−

√
aL/bL

dz πρ2(z), (3)

where the cylindrical radius ρ(z) is given by (1). The integral in expression (3) is a piecewise

sum of integrals of the type
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zb
∫

za

π
[

a + b(z − f)2
]

dz = πa(zb − za) − b

3
((zb − f)3 − (za − f)3). (4)

The evaluation of the electrostatic energy is greatly simplified by the observation [12] that

the quantum mechanical correction (the exchange term) is negligible for the determination of

the total electrostatic energy. Furthermore the electrons in the bubble are not smeared out

throughout the bubble volume, but remain in a nanometer thin, effectively two-dimensional

layer anchored to the helium surface [9,10]. This layer conforms to the helium surface also

when the bubble deforms [10]. We will assume that the surface density of electrons is

homogeneous along the surface and equal to ns = N/S where N is the number of electrons

and S is the area of the deformed bubble. Some justification of this assumption comes from

a recent calculation of the coupled ripplon-phonon modes of oscillation of an MEB [6]. In

the calculation of Ref. [6], the coupling between the modes of deformation of the helium

surface (“ripplons”) and the redistribution of the surface density of electrons (“phonons”)

was investigated, and it was derived that this coupling was weak enough not to affect strongly

the oscillation frequencies of ripplons and phonons. Within the assumptions described in

this paragraph, we may write the electrostatic repulsion energy as

EC =

∫

d3r

∫

d3r′
(nse).(nse)

ε|r − r′| (5)

=
(2πnse)

2

ε

z3
∫

z0

dz

z3
∫

z0

dz′
2

π

∞
∫

0

dk cos[k(z − z′)]I0(kρ<)K0(kρ>)ρ(z)ρ(z′), (6)

where ρ< = min[ρ(z), ρ(z′)] is the smallest of the two cylindrical radii and ρ> =

max[ρ(z), ρ(z′)] is the largest. I0 is the modified Bessel function of the first kind with

index 0, and K0 is the modified Bessel function of the second kind with index 0.

The total energy of a deformed bubble with given shape parameters is then given by

E = σS + pV + EC . (7)

Expressions (2),(3), and (5) allow to calculate the total energy E of the bubble for any

point in the shape space discussed in the previous section. In Ref. [5] the energy of an
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MEB undergoing small-amplitude oscillations was calculated. The total energy (7) of the

deformed bubble used in the present treatment agrees perfectly with the results of Ref. [5] in

those cases where both approaches are applicable. Also the equilibrium radius of a spherical

bubble, obtained by minimizing the expression (7) with respect to the radius, obviously

agrees with the result of [5].

IV. RESULTS AND DISCUSSIONS

To describe the fissioning of the bubble through a shape deformation, we will investigate

the trajectory in shape space that has the lowest energy and that starts from the spherical

bubble with equilibrium diameter d = z3 − z0 = 2Rb. The equilibrium radius Rb for the

spherical bubble with N electrons can be found by minimizing

Espherical = 4πσR2
b +

4π

3
pR3

b +
N2e2

2εRb

. (8)

When p = 0, this radius is Rb = 3

√

N2e2/(8πεσ) (for example, with N = 104 electrons in

the bubble, Rb = 1.064 µm). To investigate the presence of an energy barrier stabilizing

the MEB against fissioning, we calculate the minimum energy (and shape) of a bubble as a

function of d = z3 − z0, the elongation of the shape along the axis of symmetry (see Fig. 1).

A. Zero pressure

The results of this minimization are shown in Fig. 2, for an MEB with N = 104 electrons

at p = 0. For every given value of d (the x-axis), the shape parameters aL, bL, aR, bR, fR −

fL, z1 are varied under the constraint z3 − z0 = d. The optimal variational energy per

electron E/N given by expression (7) is shown in Fig. 2, along with the optimal variational

shape for some selected points (marked by A,B,E).

At d = 2Rb, we find that the optimal shape is a spherical bubble (the point marked by

A in Fig. 1). At increased d, the optimal bubble shape becomes ellipsoidal (for example,
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point B). The energy as a function of d, for d < 3.012 µm, is independent of d. This is

in agreement with previous results on the frequency of the vibrational modes of the bubble

[10,5]. The eigenmodes of vibration of the bubble surface are characterized by spherical

harmonic mode numbers {`, m}, and the eigenfrequencies (at p = 0) are given by [10,5]:

ω(`) =

√

σ

ρR3
b

(` − 2)(`2 − 1) (9)

The deformation corresponding to point B in Fig. 2 is an ` = 2 eigenmode of the system.

This mode has zero frequency according to expression (9). This means that it does not

cost energy to introduce small amplitude ` = 2 deformations of the bubble, and the energy

should remain constant as a function of d, as it does (see Fig. 2).

The curve representing the minimum variational energy as a function of d has a sudden

change of slope near d = 3.012 µm. The inset shows more results near this point. We found

that near this point two different minima exist, corresponding to two topologically distinct

shapes. On the horizontal part of the curve (dashed line containing point B or point C in

the inset of Fig. 2) the shape is an ellipsoid. On the curve with negative slope (full curve

containing point E or point D in the inset of Fig. 2), the optimal shape is a bubble split up

into two fragments with N/2 electrons in each of the fission fragments. These two topologies

compete for the global minimum. For d > 3.012 µm, the fissioned bubble has lower energy:

point D is lower in energy than point C.

Let’s investigate whether there exists some energy barrier stabilizing the elongated bubble

of point C against fission towards the fissioned shape corresponding to D. To split up an

elongated bubble (C) into fission fragments (D), the bubble shape has to deform through

intermediate shapes, as those shown in Fig. 3. These intermediate shapes appearing during

the fission trace out a trajectory in shape space, starting at the point corresponding to C

and ending in the point corresponding to D. This trajectory can be parametrized by an

interpolation parameter which is zero at the starting point (C) and 1 at the endpoint (D).

The energy of the intermediate shape as a function of the interpolation parameter is shown

in Fig. 3. It is clear that the two minima (elongated bubble, interpolation parameter=0,
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and split-up bubble, interpolation parameter=1) are separated by an energy barrier, of the

order of 0.2 eV per electron. During the process of fission, the elongated bubble has to

be deformed to create the neck between the fission fragment and the parent bubble. This

deformation must involve high-` modes of deformations, which cost energy ω(`) > 0. This

gives rise to the energy barrier shown in Fig. 3.

At this point it is also possible to clarify why the main limitation of the Bohr model of

fissioning does not affect our result. This limitation is that only the splitting off of a single

fragment -albeit of any size- can be described. A fissioning process whereby the bubble

splits in three or more parts cannot be modelled realistically using only three quadratic

surfaces. Nevertheless it is clear that such a fissioning process would involve high-` modes

of deformation: the more fragments appear at the surface, the more complicatedly it has to

be deformed. Such a fissioning process would therefore require even higher energy and its

realization would be much less likely. Note that the size of the fission fragments (N/2) is

in agreement with expression (8) for the energy of a spherical bubble, Espherical(N) ∝ N4/3.

This can be easily shown from minimizing Espherical(m) + Espherical(N − m) with respect to

the optimal fragment size m.

B. Effect of positive pressure

In Ref. [5], it was shown that with increasing pressure, more and more eigenmodes of the

bubble deformation obtain vanishing frequencies. The pressure dependence of the frequency

of these modes is given by [5]:

ω(`) =

√

` + 1

ρR3
b

[

σ(`2 + ` + 2) + 2pRb − N2e2

4πεR3
b

`

]

(10)

where Rb is now the equilibrium radius under pressure, which satisfies 2pRb + 4σ =

e2N2/(4πεR3
b). The effect of positive pressure is such that some modes of deformation

become ‘soft’ (i.e. have vanishing frequency): for example, for a bubble with 104 electrons

at p = 3 mbar (Rb = 0.95 µm) the ` = 2 and ` = 3 modes of deformation are unstable [5].
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Fig. 4 shows the result for the minimum variational energy of a bubble with 104 electrons

at p = 3 mbar (Rb = 0.95 µm) as a function of the elongation d. As the bubble deforms

(along the curve containing points ABC in Fig. 4), its energy decreases. Also, in contrast

with the zero-pressure case, the lowest energy shape for d < 2.68 µm exhibits deformations

with both ` = 2 and ` = 3 character. This is in agreement with (10).

Again two bubble topologies compete for the global minimum: the solution where the

shape is a singly connected surface (squares in Fig. 4), and the solution where the bubble

is split in two fragments (circles in Fig. 4). For d < 2.68 µm the singly connected, unsplit

bubble has the lower energy, whereas at larger d, the fissioned bubble has lower energy.

The availability of higher angular momentum modes (such as ` = 3) allows the MEB

to deform to create a ‘neck’ connecting an emergent fission fragment with the ‘parent’

bubble, without increasing the total energy of the bubble. In the inset of Fig. 4, we show

the variational energy of the intermediate shapes assumed by the bubble during a fission

process going from point C to point D in Fig. 4. The ‘interpolation parameter’ traces out

the trajectory in shape space during the fission process, as described in the discussion of

Fig. 2 in the previous subsection. The energy barrier which was present in the case of zero

pressure is no longer present, and we conclude that pressurized MEBs are unstable when

the pressure is high enough to drive ` > 2 modes unstable.

In ref. [5] it was shown that the pressure at which a particular mode of deformation

becomes unstable, is larger for bubbles with fewer electrons. Thus, when the pressure

is raised so as to make a bubble with N electrons unstable and fission that bubble, the

resulting fission products with N/2 electrons may still be metastable. To fission also those

fragments the pressure needs to be raised further.

C. Effect of negative pressure

Liquid helium can sustain a negative pressure of −9 bar (±1 bar) before it cavitates [13].

Here, a negative pressure on the MEB means that the force associated with this pressure
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is directed outward, away from the bubble center. Shikin [9] estimated in a simplified

model that MEBs with a radius larger than the zero-pressure equilibrium radius Rb(p =

0) may be metastable in the sense that there exists a restoring force which counteracts

small deformations. Salomaa and Williams [10] found that the nonlinear coupling between

the radial mode of oscillation and the deformational modes of oscillation may lead to a

small increase in the time-averaged radius, stabilizing the bubble. A straightforward way to

increase the bubble radius is by applying negative pressure. In Ref. [5] we showed that for

negative pressures all the eigenmodes of deformation acquire a positive frequency.

The liquid-drop model of fission allows to describe deformations beyond the small-

amplitude region of validity of the Rayleigh-Plesset equations used in [10]. Figure 5 shows

the result of negative pressures on the shape and fissioning of the bubble. The variational

minimum energy is again shown as a function of the elongation along the axis of symmetry

d = z3 −z0, for a bubble with N = 104 electrons at p = −3 mbar (Rb = 1.5 µm). In contrast

to unpressurized MEBs and MEBs at positive pressure, now three geometries compete for

the global minimum instead of two: (A) an ` = 2 deformed bubble, (B) the split-up bubble,

and (C) a spherical bubble with expanded radius. To deform the bubble from any of these

three shapes into another, intermediate shapes have to be assumed and an energy barrier

will be present like in the case of zero pressure.

But, apart from this energy barrier, another energy barrier is present: from the increase

of the energy with increasing d in Fig. 5, it is clear that there is a restoring force for small-

amplitude deformations. This restoring force was absent for p = 0 (compare Fig. 5 with Fig.

2) and in the case of p > 0 the force was of opposite sign and driving the instability (compare

Fig. 5 with Fig. 4). The restoring force is related to the lowest frequency of the eigenmodes,

ω(` = 2) which becomes positive at negative pressures, as derived in [5]. The restoring force

results in an additional energy barrier of 0.15 eV per electron in the case studied here. We

emphasize that the additional energy barrier related to the intermediate bubble shapes (as

illustrated by Fig. 3 for the p = 0 case) is present also at negative pressures (but not at

positive pressures large enough to drive ` > 2 modes to zero frequency).

11



Note furthermore that, if there is a driving force which can excite the deformation to

large amplitude and overcome the barriers, the MEB may be destroyed in one of two ways:

either by fissioning of the bubble, after which the fission fragments move away from each

other, or the MEB may keep expanding until it fills a volume large enough to counteract

the negative pressure (i.e. the MEB serves as a nucleation center for cavitation).

V. CONCLUSIONS

In this paper, the liquid drop model of fissioning was applied to the problem of multielec-

tron bubbles in liquid helium. We found that, even though there exists, at p = 0, a mode of

deformation which can grow without increasing the total energy of the bubble, there is still

an energy barrier present which prevents fissioning of the bubble. This barrier was explained

by the intermediate shapes that the fissioning bubble has to assume in order to create a neck

between the emerging fission fragment and the parent bubble. These intermediate shapes

involve eigenmodes of deformation which cost substantial energy (0.2 eV per electron for a

10000 electron bubble). At positive pressure, these higher angular momentum modes can

obtain a vanishing frequency as discussed in [5], and this causes the energy barrier to vanish

and the bubble to become unstable. However, at negative pressure, when all the modes of

deformation have a non-vanishing frequency, there is an additional element of stability in

that there is a restoring force which counteracts small amplitude deformations. The present

study, based on the liquid drop model, independently confirms and extends the conclusions

presented in a previous letter [5], namely that a positive pressure can make the MEB un-

stable, whereas a small negative pressure makes the MEB metastable against fission. The

additional result presented in this paper is that also at zero pressure the MEB is metastable.
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FIGURE CAPTIONS

FIG. 1. The model shape for a fissioning MEB consists of three quadratic forms, for

example two spheroids connected by a hyperboloidal neck as illustrated in this figure. The

relation between the model shape and the parameters used in the text, expression (1), is

shown in this figure.

FIG. 2. The minimum variational energy per electron (in eV) of an N = 104 electron

MEB at p = 0 is shown as a function of the bubble elongation d (microns). This energy is

obtained by minimizing expression (7) with respect to the shape parameters illustrated in

Fig. 1, and subject to the constraint z3 − z0 = d. The symbols (squares and diamonds) are

the results of the minimization and the curves are guides for the eye. For some points of

interest (A,B,E) the corresponding shape of the bubble is illustrated. Two bubble shapes

compete for the minimum energy: an elliptically elongated bubble (points on the dashed

curve) and the fissioned bubble (points on the full curve). For d < 3.012 µm the elongated

bubble is the minimum energy shape whereas for larger d the fissioned bubble is the minimum

energy shape.

FIG. 3. When a 104 electron MEB at zero pressure is elongated more than d = 3.012

µm, the minimization of the total energy shows that it becomes energetically favorable to

split the bubble in two equal fragments. However, in order to fission the elongated bubble,

it has to deform in such a way that a neck develops where the bubble can split in two. These

intermediate shapes of the bubble are higher in energy than either the elongated shape (C)

or the split bubble (D), and give rise to the presence of an energy barrier. Points C and

D in this figure correspond to those of Fig. 2; the fission process traces out a trajectory in

shape space connecting C and D and parametrized by an interpolation parameter ranging

from 0 (C) to 1 (D).

FIG. 4. The minimum variational energy per electron of an N = 104 electron MEB at

p = 3 mbar is shown as a function of the bubble elongation d (in micron). For some points
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of interest (A,B,C,D), the bubble shape is illustrated. In the inset, the energy is shown as a

function of the interpolation parameter which takes the shape parameters from point C into

those from point D. Comparing this figure with Figs. 2,3, it is clear that the bubble now

can decrease its energy monotonically while splitting: applying a positive pressure so that

` > 2 modes of deformation obtain a vanishing frequency can remove the energy barrier and

make the MEB unstable.

FIG. 5. The minimum variational energy per electron of an N = 104 electron MEB at

p = −3 mbar is shown as a function of the bubble elongation d = z3 − z0 (in micron). Three

geometries compete for the global minimum: the ` = 2 mode of deformation of the bubble

(point A), the split bubble (point B) and the spherical bubble with large radius (point C).

At negative pressure, there exists an additional energy barrier associated with a restoring

force which prevents small-amplitude deformations (d < 4 µm) from growing. The inset

shows the region near the maximum of the energy barrier in more detail.
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