Sources of Errors (Instrumental and Stellar)

The RV error comes from an error Budget

The total radial velocity error is the sum of a complete error budget. A stable wavelength reference is just one component

- 1. Guide errors
- 2. Changes to setup (e.g. resolution)
- 3. Stable wavelength reference
- 4. Changes in the optical system (changes in the instrumental profile)
 - a) Stabilize the spectrograph (HARPS)
 - b) Monitior IP (Iodine, Laser Comb)
- 5. The Detector (often ignored)
- 6. Proper motion/barycentric corrections
- 7. Intrinsic stellar variability

1. Guide Errors: Seeing and Image motion

Remember: At the spectrograph detector your stellar line is an image of a slit.

Stellar image in bad seeing

Stellar image in good seeing

1. Minimizing Guide Errors: Fiber Scrablers

- 1. Move and bend fibers for better scrambling
- 2. Double Scrambling. Price: less efficiency
- 3. Hexagonal fibers for better scrambling

1. Guide Errors: Atmospheric Dispersion

Atmosphere disperses the image

Atmosphere produces a dispersed image of the star (several stellar images of different colors). Some images will not fall properly on the fibre (in this case) or slit

Wavelength as a function of spectral orders

From Davide Gandolfi

Tricks to minimize guide errors: masking

Sensitive to guide errors and image motion. Can be reduced by masking the echelle

2: Changing Set-up

Period =0.74 years

LETTER TO THE EDITOR

Infrared radial velocities of vB 10*

M. R. Zapatero Osorio^{1,2}, E. L. Martín^{1,2,3}, C. del Burgo⁴, R. Deshpande³, F. Rodler⁵, and M. M. Montgomery³

The "confirmation" of the first planet discovered via astrometry THE ASTROPHYSICAL JOURNAL LETTERS, 711:L19–L23, 2010 March 1 © 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

THE PROPOSED GIANT PLANET ORBITING VB 10 DOES NOT EXIST*

JACOB L. BEAN^{1,6}, ANDREAS SEIFAHRT^{1,2}, HENRIK HARTMAN³, HAMPUS NILSSON³, ANSGAR REINERS^{1,7}, STEFAN DREIZLER¹, TODD J. HENRY⁴, AND GÜNTER WIEDEMANN⁵

Is there something different about the first point?

3. Improved Wavelength Reference

- Laser Frequency Combs
 - Provides a series of perfectly equidistant lines
 - Covers a large wavelength domain
 - Stabilized at the 10⁻¹¹ to 10⁻¹⁵ level
 - The absolute reference linked to an atomic clock

System has been developed and test in HARPS shows excellent performances:

Astro-comb: ~450 lines per order

5cm/sec PHOTON NOISE LIMITED stability in short term

Th-Ar: ~150 lines per order 24cm/sec

Laser frequency comb installed on HARPS

5. Stable Detectors!

6. Barycentric Correction

Earth's orbital motion can contribute ± 30 km/s (maximum) <u>Need to know:</u> Position of star Earth's orbit Exact time

Earth's rotation can contribute ± 460 m/s (maximum)

Need to know:

Latitude and longitude of observatory

Height above sea level

Needed for Correct Barycentric Corrections:

- Accurate coordinates of observatory
- Distance of observatory to Earth's center (altitude)
- Accurate position of stars, including proper motion:

Worst case Scenario: Barnard's star

Most programs use the JPL Ephemeris which provides barycentric corrections to a few cm/s

The Secular Acceleration of Barnard's Star (Kürster et al. 2003).

Error due to wrong coordinates

To get an error less than 10 cm/s (Earth at 1 AU) you need to know the position of the star to within 3 milliarcsecs in RA and Dec AND proper motion

Differential Earth Velocity:

Footnote: Don't put too much faith in pipeline reduction programs!

A Giant Planet Around a Metal-poor Star of Extragalactic Origin

Johny Setiawan¹, Rainer J. Klement¹, Thomas Henning¹, Hans-Walter Rin¹,

Boyke Rochau¹, Jens Rodmann², Tim Schulze-Hartung¹

No evidence of the planet orbiting the extremely metal-poor extragalactic star HIP13044.*

5. Intrinsic Stellar Variability

or

What really limits your RV accuracy

Major sources of intrinisic noise in solar-like stars

Phenomenon	Timescales	Amp. (m/s)
Oscillations	5-10 min	0.3-0.5
Spots/Activity	4-50 days	1-100
Convection	0.1-20 yrs	~10

No matter how advanced or stable your spectrometer is, the ultimate RV precision will be limited by intrinsic stellar variability.

"Quietest" stars may be constant to no better than 0.5 - 1 m/s

Stellar Oscillations are not a problem

A rapidly oscillation Ap star with P = 11 min

Radial Velocity Variations from Starspots

Spectral line distortions in an active star that is rotating rapidly

Spots are a problem

So is convection

RV changes can be as large as 10 m/ s with an 11 year period

This is a Jupiter!

One has to worry even about the nature of long period RV variations

Tools for confirming planets: Photometry

Starspots are much cooler than the photosphere

Relatively easy to measure

Tools for confirming planets: Ca II H&K

Ca II H & K core emission is a measure of magnetic activity also the Hydrogen H α Balmer line:

HD 166435

Tools for confirming planets: Bisectors

Spots produce an "anti-correlation" of Bisector Span versus RV variations:

Correlation of bisector span with radial velocity for HD 166435

Tools for confirming planets: $H\alpha$

RV variations with amplitude of 5 m/s and time scales ~30-60 days. Not a planet but changes in the convection pattern.

Convective Red/Blue Shifts also a Problem

Tools for confirming planets: IR Measurements

Flux from photosphere =

$$\frac{2\pi hc^2/\lambda^{-5}}{e^{hc/k\lambda T}p-1}$$

$$T_{Spot} = 3000 \text{ K}$$

 $T_{phot} = 5500 \text{ K}$

Flux from spot =

$$\frac{2\pi hc^2/\lambda^{-5}}{e^{hc/k\lambda T_s}-1}$$

$$F_{s}/F_{p} = \frac{e^{hc/k\lambda T_{p}-1}}{e^{hc/k\lambda T_{s}-1}} \qquad @5500 \text{ A } F_{p}/F_{s} = 53$$
$$@1.5mm F_{p}/F_{s} = 5$$

Tools for confirming planets: FWHM of the CCF

FIG. 2.—Top: The spectral line profiles at five rotation phases (separated by 0.063 in phase) of the Ca I 6439 Å profile from a star with a cool ($\Delta T = 1200$ K) spot with a radius of 15° at latitude + 20°. The star has a v sin i of 50 km s⁻¹ and an inclination of 60°. Bottom: The mean Ca I profile (line) for the five phases and the profile from an unspotted star (crosses).

Some Cautionary Tales

The Planet around TW Hya?

.......

Figure 4 | Bisector analysis of line profile asymmetry. We used a crosscorrelation technique, using several hundred spectral lines of TW Hya. We measured the bisector velocity spans (a) and bisector curvatures (b), which are well known as excellent stellar activity indicators. a, Bisector velocity span versus RV for the entire data set. There is no significant correlation (correlation coefficient ~0.2), indicating that the 3.56-day RV variation is not caused by the line profile changes. b, The bisector curvature does not show a significant correlation with the RV (correlation coefficient ~0.3), confirming that stellar activity is not responsible for the observed 3.56-day RV variation. The error bars are the standard mean errors of the mean bisector velocity span/curvature, computed from the bisectors of each echelle order.

The Non-Planet around TW Hya

Points: IR measurements, Solid line is the orbital solution using optical radial velocity measurements, but with onethird the optical amplitude \rightarrow No planet!

33 Years of Radial Velocity Measurements of Aldebaran

A signal in the residual RVs?

Second RV Period due to Activity

Resdiual RV variations are consistent with a planet with a "planet" with $M = 4.8 M_{Jup}$

Bisectors for Aldebaran

Activity Indicators

THE LICK–CARNEGIE EXOPLANET SURVEY: A 3.1 M_{\oplus} PLANET IN THE HABITABLE ZONE OF THE NEARBY M3V STAR GLIESE 581

Figure 3. From top to bottom, power spectra of the residuals to the 0-, 1-, 2-, 3-, 4-, 5-, and 6-planet solutions, respectively. The horizontal lines in each periodogram roughly indicate the 0.1%, 1.0%, and 10.0% false-alarm probability (FAP) levels from top to bottom.

Figure 5. Phased reflex barycentric velocities of the host star due individually to the planets at 3.15 days, 5.37 days, 12.9 days, 37 days, 67 days, and 433 days from the all-circular fit of Table 2. Filled (red) hexagon points are from Keck while filled (blue) triangles are from HARPS.

The HARPS search for southern extra-solar planets * XXXII. Only 4 planets in the GI 581 system

T. Forveille^{1,2}, X. Bonfils¹, X. Delfosse¹, R. Alonso³, S. Udry³, F. Bouchy^{4,5}, M. Gillon⁶, C. Lovis³, V. Neves^{1,7,8}, M. Mayor³, F. Pepe³, D. Queloz³, N.C. Santos^{7,8}, D. Ségransan³, J.-M. Almenara^{9,10,11}, H.J. Deeg^{10,11}, and M. Rabus^{10,11,12}

The Scargle Power should increase as you add more data:

630-d signal in Aldebaran

What about GL 581d?

Stellar Activity Masquerading as Planets in the Habitable Zone of the M dwarf Gliese 581

Paul Robertson^{1,2}, Suvrath Mahadevan^{1,2,3}, Michael Endl⁴, Arpita Roy^{1,2,3}

How do you know you have a planet?

- 1. Is the period of the radial velocity reasonable? Is it the expected rotation period? Can it arise from pulsations?
 - E.g. 51 Peg had an expected rotation period of ~30 days. Stellar pulsations at 4 d for a solar type star were never found
- 2. Do you have Ca II data? Look for correlations with RV period.
- 3. Get photometry of your object
- 4. Measure line bisectors
- 5. And to be double sure, measure the RV in the infrared!