

R. Claudi - INAF - Astronomical Observatory of Padova

DIRECT IMAGING OF EXTRASOLAR PLANETS

VI: INSTRUMENTATION

1st ADVANCED SCHOOL OF EXOPLANETARY SCIENCE METHODS OF DETECTING EXOPLANETS MAY 25-29, 2015 - VIETRI SUL MARE (SA)

Instrumentation

Instrument	Telescope	Wavelength (µm)	Ang. Resol. (mas)	Coronagraph
ACS	HST	0.2-1.1	20-100	Lyot
STIS	HST	0.2-0.8	20-60	Lyot
NAOS-CONICA	VLT	1.1-3.5	30-90	Lyot/FQPM
VISIR	VLT	8.5-20	200-500	
SINFONI-SPIFFI	VLT	1.1-2.45	28-62	
SPHERE	VLT	0.95-2.32	24-62	Lyot/APLC/FQPM
PUEO	CFHT	0.7-2.5	4-140	Lyot
CIAO	SUBARU	1.1-2.5	30-70	Lyot
OSIRIS	Keck I	1.0-2.4	20-100	
AO-NIRC2	Keck II	0.9-5.0	20-100	Lyot
ALTAIR-NIRI	Gemini N.	1.1-2.5	30-70	Lyot
GPI	Gemini S.	0.9-2.4	24-62	Lyot/APLC
PALM-3000 PHARO	Hale 200"	1.1-2.5	60-140	Lyot/FQPM
PALM-3000 Project1640	Hale 200"	1.06-1.76	43-71	APLC
AO-IRCAL	Shane 120"	1.1-2.5	100-150	-

Instrument	Telescope	Wavelength (µm)	Ang. Resol. (mas)	Coronagraph
ACS	HST	0.2-1.1	20-100	Lyot
STIS	HST	0.2-0.8	20-60	Lyot
NAOS-CONICA	VLT	1.1-3.5	30-90	Lyot/FQPM
VISIR	VLT	8.5-20	200-500	
SINFONI-SPIFFI	VLT	1.1-2.45	28-62	
SPHERE	VLT	0.95-2.32	24-62	Lyot/APLC/FQPM
PUEO	CFHT	0.7-2.5	4-140	Lyot
CIAO	SUBARU	1.1-2.5	30-70	Lyot
OSIRIS	Keck I	1.0-2.4	20-100	_
AO-NIRC2	Keck II	0.9-5.0	20-100	Lyot
ALTAIR-NIRI	Gemini N.	1.1-2.5	30-70	Lyot
GPI	Gemini S.	0.9-2.4	24-62	Lyot/APLC
PALM-3000 PHARO	Hale 200"	1.1-2.5	60-140	Lyot/FQPM
PALM-3000 Project1640	Hale 200"	1.06-1.76	43-71	APLC
AO-IRCAL	Shane 120"	1.1-2.5	100-150	-

Instrument	Telescope	Wavelength (µm)	Ang. Resol. (mas)	Coronagraph
ACS	HST	0.2-1.1	20-100	Lyot
STIS	HST	0.2-0.8	20-60	Lyot
NAOS-CONICA	VLT	1.1-3.5	30-90	Lyot/FQPM
VISIR	VLT	8.5-20	200-500	
SINFONI-SPIFFI	VLT	1.1-2.45	28-62	
SPHERE	VLT	0.95-2.32	24-62	Lyot/APLC/FQPM
PUEO	CFHT	0.7-2.5	4-140	Lyot
CIAO	SUBARU	1.1-2.5	30-70	Lyot
OSIRIS	Keck I	1.0-2.4	20-100	_
AO-NIRC2	Keck II	0.9-5.0	20-100	Lyot
ALTAIR-NIRI	Gemini N.	1.1-2.5	30-70	Lyot
GPI	Gemini S.	0.9-2.4	24-62	Lyot/APLC
PALM-3000 PHARO	Hale 200"	1.1-2.5	60-140	Lyot/FQPM
PALM-3000 Project1640	Hale 200"	1.06-1.76	43-71	APLC
AO-IRCAL	Shane 120"	1.1-2.5	100-150	-

Nasmyth Adaptive Optics System - Near Infrared Imager and Spectrograph CONICA

It was installed at the Nasmyth B focus of UT4 from 2001 through 2013. In 2014 it will be reinstalled on UT1 at the Nasmyth A. It provides adaptive optics assisted imaging, imaging polarimetry, coronography and spectroscopy, in the 1-5 micron range.

Lenzen, R. et al. 2003, SPIE 4841, 944

Rousset, G. et al. 2003, SPIE 4839, 140

Bonnefoy et al. 12

VLT/NaCo ADI imaging L'-band, β Pic b

Lagrange et al. 09, 10 Bonnefoy et al. 10, Quanz et al. 10

New Generation High Contrast Imager

Project 1640@PALOMAR

SPHERE@VLT

Project 1640: Palomar AO, Coronagraph & Integral Field Spectrograph

Project 1640: Palomar AO, Coronagraph & Integral Field Spectrograph

Key Features:

- 3,388 actuator AO system
- Wave Front Calibration Interferometer (JPL)
- YJH Imaging Spectrograph

MKID Technology being integrated

Hinkley et al., 2011b (PASP, 123, 74)

Subaru Discovery Image: Carson et al (2013)

Kappa Andromedae

Project 1640 Imaging

Hinkley et al. (2013)

Gemini Planet Imager

GPI Scientific Drivers

GPI will detect exoplanets in the outer regions (a > 5 AU) of the planetary systems of main sequence stars in the solar neighborhood.

- Establish directly the occurrence rate of planetary systems;
- Provide critical tests of the core accretion model, including a census of regions where gas giants can only form via gravitational instability;
- Shed light on the origin of hot Jupiters by finding planets that migrated outwards;
- Show whether or not the architecture of our own planetary system, with gas giants located between 5–10 AU is unique.

Gemini Planet Image

http://planetimager.org/

GPI's

The heart of the GPI adaptive optics system is a MEMS deformable mirror. The image above shows an existing 64x64 element device that is slightly larger than a small coin.

Direct Image PSF

(SFWFS 95% SR in H band)

Classical Lyot coronagraph Throughput 50%

APLC mask 4I/D Throughput 60%

http://planetimager.org/

CORONAGRAPH

GPI's Performance

http://planetimager.org/

GPI's Performance

Beta Pic H Band 1980 s

http://planetimager.org/

HR 4796A

Polarised Light

Total Light http://planetimager.org/

Spectro-Polarimetric High-contrast Exoplanet Research SPHERE

SPHERE Consortium

CNRS/LAOG (Grenoble, F) CNRS/LAM (Marseille, F) CNRS/LESIA (Paris, F) CNRS/LUAN (Nice, F) ESO (Garching, D) ONERA (Paris, F) INAF/ (Padova Observatory, I) MPIA (Heidelberg, D) Observatoire de Genève (CH) ETH (Zürich, CH) NOVA (Amsterdam, NL) ASTRON (Amsterdam, NL)

SPHERE Scientific Drivers

Migh contrast imaging down to planetary masses

- Investigate large target sample: statistics, variety of stellar classes, evolutionary trends
- Complete the accessible period window
- First order characterization of the atmosphere (clouds, dust content, Methane, water absorption, effective temperature, radius, dust polarization

SPHERE Capabilities in Short

- High order, high stability AO (SAXO)
- NIR Dual band imaging (IRDIS)
- NIR Integral field spectroscopy (IFS)
- NIR Slit spectroscopy (R=50 and R=500) (IRDIS)
- High accuracy VIS differential polarimetry (ZIMPOL)
- NIR differential polarimetry (IRDIS)
- VIS and NIR classical imaging (ZIMPOL/IRDIS)

SPHERE Concept

SPHERE Concept

Beuzit et al., 2008, SPIE, 7014

IFS Summary

Observing mode	Integral field spectroscopy		
Spectral range	0.95–1.35 µm: R∼50	0.95 – 1.65 µm: R∼30	
Sampling	(12.25 mas) ² / spaxel (hexagonal grid), Nyquist at 0.95 µm.		
	Resampled by the pipeline on a square with (7.4 mas) ² / pixel.		
FOV	~ 1.73" x 1.73"		
Detector type	Hawaii II RG 2048x2048		
Coronagraph	None, or with classical or apodized pupil Lyot coronagraphs, 4QPM		
Stabilization	Pupil- or Field-stabilized		
WFS	Visible light		

Claudi et al., 2008, SPIE, 7014

TIGRE vs BIGRE

TIGRE vs BIGRE

UNIT - MICRON

IRDIS Summary

Observing modes	DBI, DPI, CI	LSS	
Spectral range	0.95 – 2.32 µm: NB and BB	0.95 - 2.32 µm: R~50	
	filters	0.95 - 1.65 µm: R~350	
FOV	11" x 11"	11" slit	
Coronagraph	None, or with classical or apodized pupil Lyot coronagraphs, 4QPM	Central blocking	
Stabilization	Pupil- or Field-stabilized	Field stabilized	
Sampling	(12.25 mas) ² / pixel, Nyquist-sampled at 0.95 µm		
Detector type	Hawaii II RG 2048 x 1024		
WFS	Visible light		

Dohlen et al., 2008, SPIE, 2014

ZIMPOL Summary

Observing modes	Imaging, differential polarimetric imaging
Spectral range	500 – 900 nm in broad and narrowband filters
Sampling	(7 mas) ² / pixel, diffraction-limited at λ >600 nm
FOV	3.5" x 3.5"
Linear polarization	Instrumental polarization <1%, polarimetric sensitivity < 0.1% with fast modulation, simultaneously on two CCDs
Stabilization	 Imaging: pupil or field stabilized. Polarimetry: field stabilized, or fixed derotator with stable and minimized instrumental polarization.
Coronagraph	None, or with classical Lyot coronagraphs
WFS	Visible light shared between WFS and ZIMPOL:
	- Dichroic for R-band observation:
	(100% WFS outside R band / 100% R band to ZIMPOL)
	- Grey beam splitter:
	(20% WFS / 80% ZIMPOL), with AO limit lowered by ~1.74 mag

Thalmann et al., 2008, SPIE, 7014

SPHERE SAXO Performance

IFS 5-sigma contrast: better than 10⁻⁶ at >0.3 arcsec (tau Cet)

Polarimetric contrast with ZIMPOL

V R

Polarimetric contrast with ZIMPOL

Polarimetric contrast with ZIMPOL

First new detection with SPHERE: HR7581B (an M dwarf companion to a K-giant)

Figure 17: Detection in parallel by IRDIS (left) and IFS (right) of a faint companion at 0.24" around the bright star HR7581 (see ESO Press Release 1417, <u>http://www.eso.org/public/news/eso1417/</u>).

First new detection with SPHERE: HR7581B (an M dwarf companion to a K-giant)

Figure 17: Detection in parallel by IRDIS (left) and IFS (right) of a faint companion at 0.24" around the bright star HR7581 (see ESO Press Release 1417, <u>http://www.eso.org/public/news/eso1417/</u>).

HR8799: a system with four planets

IFS: Y-H

IRDIS: K1-K2

The three inner planed (c, d, and e) are detected with IRDIS

The two inner planed (d and e) are detected with IFS

Spectra of planets of HR8799

HR8799d

ZIMPOL: Inner disk AU Mic

HD142527 : Zimpol polarized intensity in I' (48mn on-target integration)

HD142527 : IFS image Y-J

