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Introduction Single Impurity Anderson Model

Superconducting Quantum Dot

There are many experimental realizations of a single-level quantum dot connected
to BCS leads, e.g.:

CNT
Nat. Phys. 6, 965 (2010)

SiGe
Nat. Nano. 5, 458 (2010)

C60
Nat. 453, 633 (2008)

These devices are generalized Josephson junctions!
They allow to explore a wide range of phenomena, including electron
transport, Kondo physics, quantum entanglement, different quasiparticles or
siglet-doublet phase transition
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Introduction Single Impurity Anderson Model

SIAM with superconducting leads
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General impurity hamiltonian:

H = Himp +
∑
α=L,R

Hα
lead + Hα

hyb

Single impurity Anderson model (SIAM):

Himp = ε
∑
σ=↑,↓

d†σdσ + U d†↑d↑d
†
↓d↓ ,

Hα
lead =

∑
kσ

εkc†αkσcαkσ−∆α

∑
k

e iφαc†αk↑c
†
α−k↓ + H.c.,

Hα
hyb = tα

∑
kσ

(
d†σcαkσ + c†αkσdσ

)
Normal-state tunnel coupling magnitude (energy-independent hybridization):
Γα = πt2

αρ0
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Introduction Single Impurity Anderson Model

Basic phase diagram
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∆
/π

Γ

U/Γ

BCS singlet

Kondo singlet

doublet

BCS singlet: Singlet with large
proximity induced gap
∆d = U

〈
d†↑d

†
↓

〉
Kondo singlet: The dot is occupied
by a single electron whose spin is
screened (Kondo screening) by the
contribution from band states
Doublet: Spin-doublet with a single
electron degenerate state

The 0− π transition is induced by the underlying impurity QPT related to
the crossing of the lowest many-body eigenstates from a spin-singlet ground
state with positive supercurrent (0 phase) to a spin-doublet state with
negative supercurrent (π phase)
This transition is associated with crossing of the Andreev bound states (ABS)
at the Fermi energy
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Introduction Single Impurity Anderson Model

Andreev Bound States (ABS)

Nat. Phys. 6, 965 (2010)

Pillet et. al PRB 88, 045101 (2013)

Because of the superconducting pairing the
electron in the dot with En. < ∆ is reflected
as a hole: Andreev reflection
Analogously the hole is reflected as an
electron
As a result of multiple Andreev reflections
the resonant standing waves (ABS) with
discrete energies ±ω0 appear within the
superconducting gap
Smooth crossing of ABS is associated with
the 0− π transition induced by impurity
quantum phase transition (QMC, NRG,
experiments)
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Methods Green function

Green function

We consider only the spin-symmetric solution and e = ~ = 1.

The exact form of the unperturbed impurity GF (U = 0) can be written in
the terms of Matsubara frequencies ωn ≡ (2n + 1)π/β as:

Ĝ0(iωn) =
(

iωn[1 + s(iωn)]− ε , ∆Φ(iωn)
∆∗Φ(iωn) , iωn[1 + s(iωn)] + ε

)−1

,

where s(iωn) =
∑
α=L,R

Γα√
∆2
α+ω2

n
and ∆Φ(iωn) =

∑
α=L,R

Γα∆α√
∆2
α+ω2

n
e iΦα
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Methods Green function

Green function

Self-energy (SE) matrix:

Σ̂(iωn) ≡
(

Σ(iωn), S(iωn)
S̄(iωn), Σ̄(iωn)

)

Symmetry relations:

Σ̄σ(iωn) = −Σσ(−iωn);
S̄σ(iωn) = S∗σ(−iωn).

The interacting Green function reads explicitly:

Ĝ(iωn) = − 1
D(iωn)

(
iωn[1 + s(iωn)] + ε + Σ(−iωn), −∆Φ(iωn) + S(iωn)
−∆∗

Φ(iωn) + S∗(−iωn), iωn[1 + s(iωn)]− ε− Σ(iωn)

)
ABS are determined by the zeros of the determinant (poles of Ĝ(iωn)) :

D(iωn) = ω2
n [1 + s(iωn)]2 + [ε+ Σ(iωn)] [ε+ Σ(−iωn)]

+ [∆Φ(iωn)− S(iωn)] [∆∗Φ(iωn)− S∗(−iωn)]
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Ĝ(iωn) = − 1
D(iωn)

(
iωn[1 + s(iωn)] + ε + Σ(−iωn), −∆Φ(iωn) + S(iωn)
−∆∗

Φ(iωn) + S∗(−iωn), iωn[1 + s(iωn)]− ε− Σ(iωn)

)
ABS are determined by the zeros of the determinant (poles of Ĝ(iωn)) :

D(iωn) = ω2
n [1 + s(iωn)]2 + [ε+ Σ(iωn)] [ε+ Σ(−iωn)]

+ [∆Φ(iωn)− S(iωn)] [∆∗Φ(iωn)− S∗(−iωn)]

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (9. of 19) Vietri sul Mare 2016 9 / 19



Methods Green function

Green function

Self-energy (SE) matrix:

Σ̂(iωn) ≡
(

Σ(iωn), S(iωn)
S̄(iωn), Σ̄(iωn)

) Symmetry relations:

Σ̄σ(iωn) = −Σσ(−iωn);
S̄σ(iωn) = S∗σ(−iωn).

The interacting Green function reads explicitly:
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Methods Spin-symmetric Hartree-Fock approximation

Spin-symmetric Hartree-Fock

The first order Hartree-Fock contributions to the self-energies read:
ΣHF = U

β

∑
n∈Z

G(iωn)eiωn0+
and SHF = U

β

∑
n∈Z
G(iωn)

Despite its simplicity (and contrary to the common belief), HF yields the
0− π phase transition without spin-symmetry breaking.
Moreover, the HF phase boundary can be found analytically:[

U

2
(

1 + ΓL
∆L

+ ΓR
∆R

)] =
[
ε +

U
2

]2
+
[

(ΓL − ΓR )2 + 4ΓLΓR cos2 Φ
2

]
[1 + UB]2

Where B is the band contribution:

B =
∞∫

0

dω
π

∑
α

Γαe iΦα
(
1− ∆α√

∆2
α+ω2

)
ω2
[
1 +

∑
α

Γα√
∆2
α+ω2

]2
+
∣∣∣∣∑α Γαe iΦα

(
∆α√

∆2
α+ω2

− 1
)∣∣∣∣2

By omitting the band contribution B = 0 one gets an extremely simple (and
often surprisingly good) approximation: generalized atomic limit (GAL)
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Methods Dynamical corrections

Dynamical corrections

The HF approximation leads only to static, frequency-independent mean-field
SE. This is not enough for the quantitative predictions!

The simplest dynamical corrections come from the second order of the
perturbation expansion:

Σ = − −

S = − −

With the mathematical equivalents:

Σ(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm), S(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm),

where the two-particle bubble consists of normal and anomalous parts:

χ(iνm) =
1
β

∑
n∈Z

[G(iωn)G(iωn + iνm) + G(iωn)G(iωn + iνm)]

Self-consistent solution

full self-consistent dynamical correction (FDC) approximation
evaluating the dynamical self-energies using just a fully converged HF solution
as the input into GF (DC)

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (11. of 19) Vietri sul Mare 2016 11 / 19



Methods Dynamical corrections

Dynamical corrections

The HF approximation leads only to static, frequency-independent mean-field
SE. This is not enough for the quantitative predictions!
The simplest dynamical corrections come from the second order of the
perturbation expansion:

Σ = − −

S = − −

With the mathematical equivalents:

Σ(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm), S(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm),

where the two-particle bubble consists of normal and anomalous parts:

χ(iνm) =
1
β

∑
n∈Z

[G(iωn)G(iωn + iνm) + G(iωn)G(iωn + iνm)]

Self-consistent solution

full self-consistent dynamical correction (FDC) approximation
evaluating the dynamical self-energies using just a fully converged HF solution
as the input into GF (DC)

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (11. of 19) Vietri sul Mare 2016 11 / 19



Methods Dynamical corrections

Dynamical corrections

The HF approximation leads only to static, frequency-independent mean-field
SE. This is not enough for the quantitative predictions!
The simplest dynamical corrections come from the second order of the
perturbation expansion:

Σ = − −

S = − −

With the mathematical equivalents:

Σ(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm), S(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm),

where the two-particle bubble consists of normal and anomalous parts:

χ(iνm) =
1
β

∑
n∈Z

[G(iωn)G(iωn + iνm) + G(iωn)G(iωn + iνm)]

Self-consistent solution

full self-consistent dynamical correction (FDC) approximation
evaluating the dynamical self-energies using just a fully converged HF solution
as the input into GF (DC)

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (11. of 19) Vietri sul Mare 2016 11 / 19



Methods Dynamical corrections

Dynamical corrections

The HF approximation leads only to static, frequency-independent mean-field
SE. This is not enough for the quantitative predictions!
The simplest dynamical corrections come from the second order of the
perturbation expansion:

Σ = − −

S = − −

With the mathematical equivalents:

Σ(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm), S(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm),

where the two-particle bubble consists of normal and anomalous parts:

χ(iνm) =
1
β

∑
n∈Z

[G(iωn)G(iωn + iνm) + G(iωn)G(iωn + iνm)]

Self-consistent solution
full self-consistent dynamical correction (FDC) approximation

evaluating the dynamical self-energies using just a fully converged HF solution
as the input into GF (DC)

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (11. of 19) Vietri sul Mare 2016 11 / 19



Methods Dynamical corrections

Dynamical corrections

The HF approximation leads only to static, frequency-independent mean-field
SE. This is not enough for the quantitative predictions!
The simplest dynamical corrections come from the second order of the
perturbation expansion:

Σ = − −

S = − −

With the mathematical equivalents:

Σ(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm), S(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm),

where the two-particle bubble consists of normal and anomalous parts:

χ(iνm) =
1
β

∑
n∈Z

[G(iωn)G(iωn + iνm) + G(iωn)G(iωn + iνm)]

Self-consistent solution
full self-consistent dynamical correction (FDC) approximation
evaluating the dynamical self-energies using just a fully converged HF solution
as the input into GF (DC)

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (11. of 19) Vietri sul Mare 2016 11 / 19



Methods Dynamical corrections

Dynamical corrections

The HF approximation leads only to static, frequency-independent mean-field
SE. This is not enough for the quantitative predictions!
The simplest dynamical corrections come from the second order of the
perturbation expansion:

Σ = − −

S = − −

With the mathematical equivalents:

Σ(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm), S(2)(iωn) = −
U2

β

∑
m∈Z

G(iωn + iνm)χ(iνm),

where the two-particle bubble consists of normal and anomalous parts:

χ(iνm) =
1
β

∑
n∈Z

[G(iωn)G(iωn + iνm) + G(iωn)G(iωn + iνm)]

Self-consistent solution
full self-consistent dynamical correction (FDC) approximation
evaluating the dynamical self-energies using just a fully converged HF solution
as the input into GF (DC)

Vietri sul Mare (Charles University, Prague) Perturbation theory of SQD (11. of 19) Vietri sul Mare 2016 11 / 19



Discussion ABS and supercurrent

DC vs FDC vs NRG
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FDC is charge conserving in the
general case
DC is charge conserving for equal
gaps
- proven analytically in M.Ž. et.
al, PRB 93, 024523 (2016)
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Discussion Phase diagrams

Phase diagrams: ΓL = ΓR = Γ/2 ,∆L = ∆R , half-filling
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DC and GAL are in surprisingly good agreement with NRG
HF overestimates the contribution from the bands
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Discussion Comparison with experiments

Grenoble experiment [Phys. Rev. X 2, 011009 (2012)]
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The tunneling amplitudes to the
leads were balanced
Γ/2 = ΓL = ΓR

The authors argue that the Kondo
screening plays a key role for the
phase transition in their device
(U ' 0.8 meV and SC ∆ ' 0.08
meV)
The SC ABS (U = 10∆) is very
close to the experimental data
DC performs well even beyond its
expected validity
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Discussion Comparison with experiments

Orsay experiment [Phys. Rev. B 91, 241401(R) (2015)]

R. Delagrange et. al Phys. Rev. B 91,
241401(R) (2015)

Experimental confirmation of the
0− π transition controlled by the
gate voltage in CNT by
Delagrange et al.
∆ = 0.17meV and U = 3.2 meV
were experimentally determined
with the uncertainty ∼ 10%
The QMC calculations gave an
excellent agreement for the shape
and width of the 0− π boundary
However, a shift of the energy
level δε = 0.28 meV was needed
to overlap the experimental data
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We used the DC approximation
and compared it with the
experimental and QMC data
We have reproduced the phase
boundary almost perfectly with a
small shift δε = 0.14 meV
We have checked how the
boundary depends on the variance
of used parameters.
The shape and width of the
boundary are robust within the
10% uncertainty
The ε position of the boundary is
very sensitive to the value of U
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Conclusions
The self-consistent second-order perturbation expansion in the U of the
superconducting SIAM can reliably substitute time and resources consuming
numerical methods such us the NRG or QMC for a broad range of parameters

Its big potential was shown by analyzing two existing experimental data sets
for the 0− π phase boundary, including the suggestion for a plausible
explanation of the existing discrepancy between the newest experiment and
corresponding QMC results
What next?
Extend the DC into π phase! Main problem is the degenerate doublet
ground state (Guide: D.E. Logan et. al, PRB 90,075150 (2014) ).
Three-terminal heterostructure arXiv:1609.08540:



Conclusions
The self-consistent second-order perturbation expansion in the U of the
superconducting SIAM can reliably substitute time and resources consuming
numerical methods such us the NRG or QMC for a broad range of parameters
Its big potential was shown by analyzing two existing experimental data sets
for the 0− π phase boundary, including the suggestion for a plausible
explanation of the existing discrepancy between the newest experiment and
corresponding QMC results

What next?
Extend the DC into π phase! Main problem is the degenerate doublet
ground state (Guide: D.E. Logan et. al, PRB 90,075150 (2014) ).
Three-terminal heterostructure arXiv:1609.08540:



Conclusions
The self-consistent second-order perturbation expansion in the U of the
superconducting SIAM can reliably substitute time and resources consuming
numerical methods such us the NRG or QMC for a broad range of parameters
Its big potential was shown by analyzing two existing experimental data sets
for the 0− π phase boundary, including the suggestion for a plausible
explanation of the existing discrepancy between the newest experiment and
corresponding QMC results
What next?

Extend the DC into π phase! Main problem is the degenerate doublet
ground state (Guide: D.E. Logan et. al, PRB 90,075150 (2014) ).
Three-terminal heterostructure arXiv:1609.08540:



Conclusions
The self-consistent second-order perturbation expansion in the U of the
superconducting SIAM can reliably substitute time and resources consuming
numerical methods such us the NRG or QMC for a broad range of parameters
Its big potential was shown by analyzing two existing experimental data sets
for the 0− π phase boundary, including the suggestion for a plausible
explanation of the existing discrepancy between the newest experiment and
corresponding QMC results
What next?
Extend the DC into π phase! Main problem is the degenerate doublet
ground state (Guide: D.E. Logan et. al, PRB 90,075150 (2014) ).

Three-terminal heterostructure arXiv:1609.08540:



Conclusions
The self-consistent second-order perturbation expansion in the U of the
superconducting SIAM can reliably substitute time and resources consuming
numerical methods such us the NRG or QMC for a broad range of parameters
Its big potential was shown by analyzing two existing experimental data sets
for the 0− π phase boundary, including the suggestion for a plausible
explanation of the existing discrepancy between the newest experiment and
corresponding QMC results
What next?
Extend the DC into π phase! Main problem is the degenerate doublet
ground state (Guide: D.E. Logan et. al, PRB 90,075150 (2014) ).
Three-terminal heterostructure arXiv:1609.08540:



Conclusions
The self-consistent second-order perturbation expansion in the U of the
superconducting SIAM can reliably substitute time and resources consuming
numerical methods such us the NRG or QMC for a broad range of parameters
Its big potential was shown by analyzing two existing experimental data sets
for the 0− π phase boundary, including the suggestion for a plausible
explanation of the existing discrepancy between the newest experiment and
corresponding QMC results
What next?
Extend the DC into π phase! Main problem is the degenerate doublet
ground state (Guide: D.E. Logan et. al, PRB 90,075150 (2014) ).
Three-terminal heterostructure arXiv:1609.08540:



Conclusions

Thank you for your attention!
You can find more in our publications:

M.Ž., V. Pokorný, V. Janiš and T. Novotný, Phys. Rev. B 93, 024523 (2016)
V. Janiš and V. Pokorný, M.Ž., Eur. Phys. J. B 89, 197 (2016)
M.Ž., V. Pokorný, V. Janiš and T. Novotný, Sci. Rep. 5, 8821 (2015)
V. Pokorný, V. Janiš, T. Novotný, M.Ž., Acta Physica Polonica A 126, 352
(2014)
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