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Metal-Insulator Transitions 
in the Presence of Disorder: 

Examples



d=3
Anderson metal-insulator transition:

(disorder induced)



Kravchenko, Mason, Bowker, 
Furneaux, Pudalov, 
D’Iorio (1995)

Metal-insulator transition in a dilute, 
low-disordered Si MOSFET d=2



Disorder
(quenched)
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Random local potential

Anderson disorder model on the lattice

Random hopping



Random local potential

Anderson disorder model on the lattice
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Disorder  Scattering of a (quantum) particle

1( 0)


  Scattering time τ 

Weak scattering (d=3)

Drude/Boltzmann conductivity



Random local potential

Anderson disorder model on the lattice
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Δ: disorder strength

Disorder distributions, e.g.,:

1 / 

Box disorder

arith
( )i i i iO d P O  

e.g., local DOS arith
( )i 



Random local potential

Anderson disorder model on the lattice
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Δ: disorder strength

Disorder distributions, e.g.,:

1 / 

Box disorder

.

1-xx

Binary alloy disorder (alloys A1-xBx, e.g., Fe1-xCox)   
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e.g., local DOS arith
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( )( ) ( ) ie   rr rDisorder affects wave fct.

Anderson localization

Localization of a particle,              , due to, e.g.,(0) 0 



( )( ) ( ) ie   rr rDisorder affects wave fct.

Anderson localization

Alloy band splitting

max( , ),  for 1c Ut d   
Binary alloy disorder, bounded Hamiltonian

Upper alloy 
Subband (UAB)

Lower alloy 
Subband (LAB):

Localization of a particle,              , due to, e.g.,(0) 0 



DMFT for disordered systems



Anderson disorder model on the lattice
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Soven (1967) 
Taylor (1967)

Coherent potential approximation (CPA)
(“best single-site approximation”)

• robust results for 
• cannot describe Anderson localization

arith
( )i 



Example: CPA results for phonon DOS for disordered cubic crystal

Elliot, Krumhansl, Leath (RMP, 1974)



Coherent Potential Approximation and d

Vlaming, DV (1992)

Janiš, DV (1992)

G(  )


îv

Generalization of DMFT to disordered and interacting lattice electrons

Local potential operator:

CPA = exact solution of the Anderson disorder model in d

DMFT with arith
( )i   CPAMore precisely:



Mott-Hubbard Transition 
vs. 

Anderson Localization
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Anderson-Hubbard Hamiltonian

Δ: disorder strength

1 / 
Box disorder

n=1

1. Can both transitions be characterized by the average local DOS?
2. Further destabilization of correlated metallic phase by disorder?
3. Are the Mott insulator and Anderson insulator separated by 

another (metallic) phase?

1. Can both transitions be characterized by the average local DOS?
2. Further destabilization of correlated metallic phase by disorder?
3. Are the Mott insulator and Anderson insulator separated by 

another (metallic) phase?

Δ=0: Mott-Hubbard metal-insulator transition for U>Uc
U=0: Anderson localization for                  in d>20c   



Usually unknown

Anderson (1958)



Approximation of PDF: calculate averages + moments

Why? Because arithmetic average
does not yield the max. of the PDF!



PDF of disordered systems: very broad/long tails
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Approximation of PDF: calculate averages + moments

Why? Because arithmetic average
does not yield the max. of the PDF!



PDF of disordered systems: very broad/long tails

 



Localized
(strong disorder):
Very asymmetric; 
Long tails
(Log-normal
distribution)

Metallic (weak disorder):
Rather symmetric; peak close to 
arithmetic mean

Local DOS
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Anderson (1958)



lattice Green function

DMFT for Anderson-Hubbard model

Dobrosavljevic, Pastor, Nikolic (2003)



?
metal

Anderson 
insulator

Mott-Hubbard 
insulator

Mott-Hubbard Transition vs. Anderson Localization

c

cU



Non-magnetic phase diagram; n=1,T=0

Byczuk, Hofstetter, DV (2005)

Local DOS
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Anderson-Hubbard Hamiltonian

Δ: disorder strength

1 / 

Critical behavior at
localization transition

Solution by DMFT(NRG)
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Non-magnetic phase diagram; n=1,T=0

Hubbard 
subbands
vanish

†

, ,
it UH c c n n n  

 

      i j ii i
i j i i

Anderson-Hubbard Hamiltonian

Δ: disorder strength

1 / 

Anderson- and
Mott insulator
neighboring

Byczuk, Hofstetter, DV (2005)

• Disorder increases

• Interaction in/decreases

cU

A
c

 Interactions may increase 
metallicity

d=2:
Denteneer, Scalettar, Trivedi (1999)



Non-magnetic phase diagram; n=1,T=0

Hubbard 
subbands
vanish
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Anderson-Hubbard Hamiltonian

Δ: disorder strength

1 / 

Anderson- and
Mott insulator
neighboring

Byczuk, Hofstetter, DV (2005)

DMRG for disordered bosons in d=1

Rapsch, Schollwöck, Zwerger (1999)



Antiferromagnetism
vs. 

Anderson Localization



NN hopping, bipartite lattice, n=1:
Take into account antiferromagnetic order
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Anderson-Hubbard Hamiltonian

Δ: disorder strength

1 / 

Unrestricted Hartree-Fock, d=3

Tusch, Logan (1993)
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Anderson-Hubbard Hamiltonian

Δ: disorder strength

1 / 

Byczuk, Hofstetter, DV (2009)

DMFT: Non-magnetic phase diagram Magnetic phase diagram

(small) (large)N
o 
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NN hopping, bipartite lattice, n=1:
Take into account antiferromagnetic order


